Suppr超能文献

使用超声引导的漫射光学断层扫描预测乳腺癌对新辅助化疗的治疗反应

Predicting Treatment Response of Breast Cancer to Neoadjuvant Chemotherapy Using Ultrasound-Guided Diffuse Optical Tomography.

作者信息

Zhi Wenxiang, Liu Guangyu, Chang Cai, Miao Aiyu, Zhu Xiaoli, Xie Li, Zhou Jin

机构信息

Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.

Department of Breast Surgery, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.

出版信息

Transl Oncol. 2018 Feb;11(1):56-64. doi: 10.1016/j.tranon.2017.10.011. Epub 2017 Nov 22.

Abstract

PURPOSE

To prospectively investigate ultrasound-guided diffuse optical tomography (US-guided DOT) in predicting breast cancer response to neoadjuvant chemotherapy (NAC).

MATERIALS AND METHODS

Eighty-eight breast cancer patients, with a total of 93 lesions, were included in our study. Pre- and post-last chemotherapy, size and total hemoglobin concentration (THC) of each lesion were measured by conventional US and US-guided DOT 1 day before biopsy (time point t0, THC THC0, SIZE S0) and 1 to 2 days before surgery (time point tL, THCL, SL). The relative changes in THC and SIZE of lesions after the first and last NAC cycles were considered as the variables ΔTHC and ΔSIZE. Receiver operating characteristic curve was performed to calculate ΔTHC and ΔSIZE cutoff values to evaluate pathologic response of 93 breast cancers to NAC, which were then prospectively used to predicate response of 61 breast cancers to NAC.

RESULTS

The cutoff values of ΔTHC and ΔSIZE for evaluation of breast cancers NAC treatment response were 23.9% and 42.6%. At ΔTHC 23.9%, the predicted treatment response in 61 breast lesions for the time points t1 to t3 was calculated by area under the curve (AUC), which were AUC 0.534 (P=.6668), AUC 0.604 (P=.1893), and AUC 0.674(P =. 0.027), respectively; for ΔSIZE 42.6%, at time points t1 to t3, AUC 0.505 (P=.9121), AUC 0.645 (P=.0115), and AUC 0.719 (P=.0018).

CONCLUSION

US-guided DOT ΔTHC 23.9% and US ΔSIZE 42.6% can be used for the response evaluation and earlier prediction of the pathological response after three rounds of chemotherapy.

摘要

目的

前瞻性研究超声引导下的扩散光学断层扫描(US引导的DOT)在预测乳腺癌新辅助化疗(NAC)反应中的作用。

材料与方法

本研究纳入了88例乳腺癌患者,共93个病灶。在最后一次化疗前后,于活检前1天(时间点t0,总血红蛋白浓度THC0,大小S0)和手术前1至2天(时间点tL,THCL,SL),通过传统超声和US引导的DOT测量每个病灶的大小和总血红蛋白浓度(THC)。将首个和最后一个NAC周期后病灶的THC和大小的相对变化视为变量ΔTHC和ΔSIZE。绘制受试者工作特征曲线以计算ΔTHC和ΔSIZE的临界值,用于评估93例乳腺癌对NAC的病理反应,然后前瞻性地用于预测61例乳腺癌对NAC的反应。

结果

评估乳腺癌NAC治疗反应的ΔTHC和ΔSIZE临界值分别为23.9%和42.6%。在ΔTHC为23.9%时,通过曲线下面积(AUC)计算61个乳腺病灶在时间点t1至t3的预测治疗反应,分别为AUC 0.534(P = 0.6668)、AUC 0.604(P = 0.1893)和AUC 0.674(P = 0.027);对于ΔSIZE为42.6%,在时间点t1至t3,AUC分别为0.505(P = 0.9121)、AUC 0.645(P = 0.0115)和AUC 0.719(P = 0.0018)。

结论

US引导的DOT的ΔTHC 23.9%和US的ΔSIZE 42.6%可用于三轮化疗后病理反应的反应评估和早期预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b477/5714257/5a7fa34478fa/gr1.jpg

相似文献

1
Predicting Treatment Response of Breast Cancer to Neoadjuvant Chemotherapy Using Ultrasound-Guided Diffuse Optical Tomography.
Transl Oncol. 2018 Feb;11(1):56-64. doi: 10.1016/j.tranon.2017.10.011. Epub 2017 Nov 22.
2
US-guided Diffuse Optical Tomography: Clinicopathological Features Affect Total Hemoglobin Concentration in Breast Cancer.
Transl Oncol. 2018 Aug;11(4):845-851. doi: 10.1016/j.tranon.2018.04.009. Epub 2018 May 9.
3
Early Assessment Window for Predicting Breast Cancer Neoadjuvant Therapy using Biomarkers, Ultrasound, and Diffuse Optical Tomography.
Breast Cancer Res Treat. 2021 Aug;188(3):615-630. doi: 10.1007/s10549-021-06239-y. Epub 2021 May 10.
6
A Narrative Review of Ultrasound Technologies for the Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer.
Cancer Manag Res. 2021 Oct 14;13:7885-7895. doi: 10.2147/CMAR.S331665. eCollection 2021.
10
Correlations Among Ultrasound-Guided Diffuse Optical Tomography, Microvessel Density, and Breast Cancer Prognosis.
J Ultrasound Med. 2018 Apr;37(4):833-842. doi: 10.1002/jum.14416. Epub 2017 Oct 19.

引用本文的文献

1
Phase-based structured interrogation frequency-domain near-infrared spectroscopy.
J Opt Soc Am A Opt Image Sci Vis. 2024 Aug 1;41(8):1500-1512. doi: 10.1364/JOSAA.523194.
2
Monte Carlo simulation of spatial frequency domain imaging for breast tumors during compression.
J Biomed Opt. 2024 Sep;29(9):096001. doi: 10.1117/1.JBO.29.9.096001. Epub 2024 Sep 14.
4
Optical Breast Imaging: A Review of Physical Principles, Technologies, and Clinical Applications.
J Breast Imaging. 2023 Sep-Oct;5(5):520-537. doi: 10.1093/jbi/wbad057. Epub 2023 Sep 22.
5
Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis.
J Biomed Opt. 2022 Aug;27(8). doi: 10.1117/1.JBO.27.8.080901.
6
A Narrative Review of Ultrasound Technologies for the Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer.
Cancer Manag Res. 2021 Oct 14;13:7885-7895. doi: 10.2147/CMAR.S331665. eCollection 2021.
7
Early Assessment Window for Predicting Breast Cancer Neoadjuvant Therapy using Biomarkers, Ultrasound, and Diffuse Optical Tomography.
Breast Cancer Res Treat. 2021 Aug;188(3):615-630. doi: 10.1007/s10549-021-06239-y. Epub 2021 May 10.
10
Effect of Source-Detector Distance on the Measurement of Hemoglobin Using Near-Infrared Spectroscopy in Breast Cancer.
Technol Cancer Res Treat. 2019 Jan 1;18:1533033819830411. doi: 10.1177/1533033819830411.

本文引用的文献

2
3
Prospective trial of breast MRI versus 2D and 3D ultrasound for evaluation of response to neoadjuvant chemotherapy.
Ann Surg Oncol. 2015 Sep;22(9):2888-94. doi: 10.1245/s10434-014-4357-3. Epub 2015 Jan 15.
6
Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment.
Clin Cancer Res. 2014 Dec 1;20(23):6006-15. doi: 10.1158/1078-0432.CCR-14-1415. Epub 2014 Oct 7.
10
Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy.
Biomed Opt Express. 2013 Jan 1;4(1):105-21. doi: 10.1364/BOE.4.000105. Epub 2012 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验