Suppr超能文献

对称性对神经网络结构可控性的影响:一种视角

Effects Of Symmetry On The Structural Controllability Of Neural Networks: A Perspective.

作者信息

Whalen Andrew J, Brennan Sean N, Sauer Timothy D, Schiff Steven J

机构信息

A. J. Whalen and S. N. Brennan are with the Center for Neural Engineering, Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA

T. D. Sauer, is with the Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

出版信息

Proc Am Control Conf. 2016 Jul;2016:5785-5790. doi: 10.1109/ACC.2016.7526576. Epub 2016 Aug 1.

Abstract

The controllability of a dynamical system or network describes whether a given set of control inputs can completely exert influence in order to drive the system towards a desired state. Structural controllability develops the canonical coupling structures in a network that lead to un-controllability, but does not account for the effects of explicit symmetries contained in a network. Recent work has made use of this framework to determine the minimum number and location of the optimal actuators necessary to completely control complex networks. In systems or networks with structural symmetries, group representation theory provides the mechanisms for how the symmetry contained in a network will influence its controllability, and thus affects the placement of these critical actuators, which is a topic of broad interest in science from ecological, biological and man-made networks to engineering systems and design.

摘要

动态系统或网络的可控性描述了给定的一组控制输入是否能够完全发挥影响,以便将系统驱动到期望状态。结构可控性研究网络中导致不可控性的典型耦合结构,但未考虑网络中明确对称性的影响。最近的研究利用这一框架来确定完全控制复杂网络所需的最优执行器的最少数量和位置。在具有结构对称性的系统或网络中,群表示理论提供了网络中所含对称性如何影响其可控性的机制,进而影响这些关键执行器的布局,这是从生态、生物和人造网络到工程系统与设计等科学领域广泛关注的一个话题。

相似文献

1
Effects Of Symmetry On The Structural Controllability Of Neural Networks: A Perspective.
Proc Am Control Conf. 2016 Jul;2016:5785-5790. doi: 10.1109/ACC.2016.7526576. Epub 2016 Aug 1.
2
Observability and Controllability of Nonlinear Networks: The Role of Symmetry.
Phys Rev X. 2015 Jan-Mar;5(1). doi: 10.1103/PhysRevX.5.011005. Epub 2015 Jan 23.
3
Exact controllability of complex networks.
Nat Commun. 2013;4:2447. doi: 10.1038/ncomms3447.
4
The impact of input node placement in the controllability of structural brain networks.
Sci Rep. 2024 Mar 22;14(1):6902. doi: 10.1038/s41598-024-57181-0.
5
Enabling Controlling Complex Networks with Local Topological Information.
Sci Rep. 2018 Mar 15;8(1):4593. doi: 10.1038/s41598-018-22655-5.
6
On the effects of memory and topology on the controllability of complex dynamical networks.
Sci Rep. 2020 Oct 15;10(1):17346. doi: 10.1038/s41598-020-74269-5.
7
Optimization of robustness of interdependent network controllability by redundant design.
PLoS One. 2018 Feb 13;13(2):e0192874. doi: 10.1371/journal.pone.0192874. eCollection 2018.
8
Universal framework for edge controllability of complex networks.
Sci Rep. 2017 Jun 26;7(1):4224. doi: 10.1038/s41598-017-04463-5.
9
Structural Target Controllability of Brain Networks in Dementia.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3978-3981. doi: 10.1109/EMBC46164.2021.9630496.
10
Network controllability measures of subnetworks: implications for neurosciences.
J Neural Eng. 2023 Feb 9;20(1). doi: 10.1088/1741-2552/acb256.

本文引用的文献

1
Observability and Controllability of Nonlinear Networks: The Role of Symmetry.
Phys Rev X. 2015 Jan-Mar;5(1). doi: 10.1103/PhysRevX.5.011005. Epub 2015 Jan 23.
3
Nodal dynamics, not degree distributions, determine the structural controllability of complex networks.
PLoS One. 2012;7(6):e38398. doi: 10.1371/journal.pone.0038398. Epub 2012 Jun 22.
4
Controllability of complex networks.
Nature. 2011 May 12;473(7346):167-73. doi: 10.1038/nature10011.
5
Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.
Neuron. 2006 Oct 5;52(1):155-68. doi: 10.1016/j.neuron.2006.09.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验