Li Guoqi, Deng Lei, Xiao Gaoxi, Tang Pei, Wen Changyun, Hu Wuhua, Pei Jing, Shi Luping, Stanley H Eugene
Center for Brain Inspired Computing Research, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, P. R. China.
Sci Rep. 2018 Mar 15;8(1):4593. doi: 10.1038/s41598-018-22655-5.
Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.
复杂网络刻画了包括社会、经济、生物、生态和技术网络在内的现实世界系统中内部/外部相互作用的本质。有两个问题阻碍着对大规模网络的控制:结构可控性,它描述了在有限时间内通过适当选择输入将动态系统从任何初始状态引导到任何期望最终状态的能力;以及最优控制,这是一种典型的控制方法,用于在给定数量的控制输入下最小化将网络驱动到预定义状态的成本。对于没有网络拓扑全局信息的大型复杂网络,这两个问题基本上仍然悬而未决。在这里,我们结合图论和控制理论,仅使用局部网络拓扑信息一次性解决这两个问题。对于结构可控性问题,我们提出了一种分布式局部博弈匹配方法,其中每个节点利用局部信息并与相邻节点进行局部交互来进行简单的贝叶斯博弈,以线性复杂度确保得到次优解。从任何结构可控性解决方案出发,一种最小化最长控制路径的方法可以有效地为大型网络中的最优控制找到一个好的解决方案。我们的结果为分布式复杂网络控制提供了解决方案,并展示了一种将结构可控性和最优控制联系起来的方法。