Suppr超能文献

线粒体脂肪酸氧化障碍的认识与治疗进展

Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders.

作者信息

Goetzman Eric S

机构信息

University of Pittsburgh.

出版信息

Curr Genet Med Rep. 2017 Sep;5(3):132-142. doi: 10.1007/s40142-017-0125-6. Epub 2017 Jul 25.

Abstract

PURPOSE OF REVIEW

This review focuses on advances made in the past three years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders.

RECENT FINDINGS

FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the and genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets.

SUMMARY

Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.

摘要

综述目的

本综述重点关注过去三年在理解线粒体脂肪酸氧化(FAO)途径、FAO酶基因损伤的病理生理后果以及FAO障碍的新兴治疗方法方面取得的进展。

最新发现

现已认识到FAO在肺表面活性物质合成、T细胞分化和记忆以及近端小管对肾损伤的反应中发挥关键的能量作用。随着年龄增长,患有FAO障碍的患者可能会在这些细胞系统中出现缺陷。阿司匹林、他汀类药物和营养补充剂在正常情况下会调节FAO速率,可能是引发FAO障碍患者症状的危险因素。已鉴定出患者在[具体基因名称1]和[具体基因名称2]基因中存在突变,这可能代表新的FAO障碍。针对长链FAODs的新干预措施正在进行临床试验。最后,已对调节脂肪酸氧化蛋白活性的翻译后修饰进行了表征,这代表了重要的新治疗靶点。

总结

最近的研究使人们对FAO有了更深入的理解。正在探索新的治疗途径,最终可能会给患者护理带来范式转变。

相似文献

1
Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders.
Curr Genet Med Rep. 2017 Sep;5(3):132-142. doi: 10.1007/s40142-017-0125-6. Epub 2017 Jul 25.
3
Physiological Perspectives on the Use of Triheptanoin as Anaplerotic Therapy for Long Chain Fatty Acid Oxidation Disorders.
Front Genet. 2021 Jan 15;11:598760. doi: 10.3389/fgene.2020.598760. eCollection 2020.
5
Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency.
Mol Genet Metab Rep. 2020 May 30;24:100610. doi: 10.1016/j.ymgmr.2020.100610. eCollection 2020 Sep.
6
Disorders of mitochondrial fatty acyl-CoA beta-oxidation.
J Inherit Metab Dis. 1999 Jun;22(4):442-87. doi: 10.1023/a:1005504223140.
7
Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency.
FEBS Lett. 2020 Feb;594(4):590-610. doi: 10.1002/1873-3468.13735. Epub 2020 Jan 29.
8
The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders.
Annu Rev Physiol. 2016;78:23-44. doi: 10.1146/annurev-physiol-021115-105045. Epub 2015 Oct 14.
9
The Link Between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury.
Front Physiol. 2020 Jul 9;11:794. doi: 10.3389/fphys.2020.00794. eCollection 2020.

引用本文的文献

1
ACAD10 and ACAD11 enable mammalian 4-hydroxy acid lipid catabolism.
Nat Struct Mol Biol. 2025 Jun 19. doi: 10.1038/s41594-025-01596-4.
4
ACAD10 and ACAD11 enable mammalian 4-hydroxy acid lipid catabolism.
bioRxiv. 2024 Jan 9:2024.01.09.574893. doi: 10.1101/2024.01.09.574893.
7
Clinical and biochemical footprints of inherited metabolic disorders: X. Metabolic myopathies.
Mol Genet Metab. 2022 Sep-Oct;137(1-2):213-222. doi: 10.1016/j.ymgme.2022.09.004. Epub 2022 Sep 18.
8
Qualitative evaluation of the symptoms and quality of life impacts of long-chain fatty acid oxidation disorders.
Ther Adv Endocrinol Metab. 2022 Jan 10;13:20420188211065655. doi: 10.1177/20420188211065655. eCollection 2022.
9
Biochemical Markers for the Diagnosis of Mitochondrial Fatty Acid Oxidation Diseases.
J Clin Med. 2021 Oct 22;10(21):4855. doi: 10.3390/jcm10214855.
10
The enzyme activity of mitochondrial trifunctional protein is not altered by lysine acetylation or lysine succinylation.
PLoS One. 2021 Oct 13;16(10):e0256619. doi: 10.1371/journal.pone.0256619. eCollection 2021.

本文引用的文献

1
Lipid Nanoparticle Systems for Enabling Gene Therapies.
Mol Ther. 2017 Jul 5;25(7):1467-1475. doi: 10.1016/j.ymthe.2017.03.013. Epub 2017 Apr 13.
2
Gene Therapy 2017: Progress and Future Directions.
Clin Transl Sci. 2017 Jul;10(4):242-248. doi: 10.1111/cts.12466. Epub 2017 May 23.
4
Identification of enzymes involved in oxidation of phenylbutyrate.
J Lipid Res. 2017 May;58(5):955-961. doi: 10.1194/jlr.M075317. Epub 2017 Mar 9.
5
EndoC-βH1 cells display increased sensitivity to sodium palmitate when cultured in DMEM/F12 medium.
Islets. 2017 May 4;9(3):e1296995. doi: 10.1080/19382014.2017.1296995. Epub 2017 Feb 28.
6
FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis.
J Lipid Res. 2017 May;58(5):866-875. doi: 10.1194/jlr.M071357. Epub 2017 Mar 1.
8
Investigating the link of ACAD10 deficiency to type 2 diabetes mellitus.
J Inherit Metab Dis. 2018 Jan;41(1):49-57. doi: 10.1007/s10545-017-0013-y. Epub 2017 Jan 24.
10
An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer.
Cell. 2016 Dec 15;167(7):1705-1718.e13. doi: 10.1016/j.cell.2016.11.055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验