Suppr超能文献

微生物视紫红质的转化:对功能必需元件及合理蛋白质工程的见解

Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering.

作者信息

Kaneko Akimasa, Inoue Keiichi, Kojima Keiichi, Kandori Hideki, Sudo Yuki

机构信息

Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.

Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.

出版信息

Biophys Rev. 2017 Dec;9(6):861-876. doi: 10.1007/s12551-017-0335-x. Epub 2017 Nov 25.

Abstract

Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.

摘要

技术进步已使功能转换成功应用于多种生物分子,如核苷酸和蛋白质。此类研究揭示了这些工程分子的功能必需元件,而这些元件在单个分子水平上难以表征。生物分子的功能转换还为其合理且原子水平的设计提供了一种策略。工程分子可用于研究,以增进我们对其生物学功能的理解,并开发基于蛋白质的工具。在本综述中,我们介绍膜嵌入光感受视黄醛蛋白(也称为视紫红质)的功能转换,并主要基于我们自己的研究结果来讨论这些蛋白质。这些信息为光诱导蛋白质功能的分子机制及其在光遗传学中的应用提供了见解,光遗传学是一种利用光来控制生物活性的技术。

相似文献

1
Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering.
Biophys Rev. 2017 Dec;9(6):861-876. doi: 10.1007/s12551-017-0335-x. Epub 2017 Nov 25.
2
The Unlimited Potential of Microbial Rhodopsins as Optical Tools.
Biochemistry. 2020 Jan 28;59(3):218-229. doi: 10.1021/acs.biochem.9b00768. Epub 2019 Dec 16.
3
Microbial Rhodopsins as Multi-functional Photoreactive Membrane Proteins for Optogenetics.
Biol Pharm Bull. 2021;44(10):1357-1363. doi: 10.1248/bpb.b21-00544.
4
Biophysics of rhodopsins and optogenetics.
Biophys Rev. 2020 Apr;12(2):355-361. doi: 10.1007/s12551-020-00645-0. Epub 2020 Feb 17.
5
The light-driven sodium ion pump: A new player in rhodopsin research.
Bioessays. 2016 Dec;38(12):1274-1282. doi: 10.1002/bies.201600065. Epub 2016 Nov 17.
6
[Photosensing by membrane-embedded receptors and its application for the life scientists].
Yakugaku Zasshi. 2012;132(4):407-16. doi: 10.1248/yakushi.132.407.
7
Microbial rhodopsins: wide distribution, rich diversity and great potential.
Biophys Physicobiol. 2015 Dec 11;12:121-9. doi: 10.2142/biophysico.12.0_121. eCollection 2015.
8
Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy.
Biochim Biophys Acta. 2014 May;1837(5):598-605. doi: 10.1016/j.bbabio.2013.09.004. Epub 2013 Sep 13.
9
Light-driven ion-translocating rhodopsins in marine bacteria.
Trends Microbiol. 2015 Feb;23(2):91-8. doi: 10.1016/j.tim.2014.10.009.
10
Ion-pumping microbial rhodopsins.
Front Mol Biosci. 2015 Sep 22;2:52. doi: 10.3389/fmolb.2015.00052. eCollection 2015.

引用本文的文献

1
Solid-state NMR of the retinal protonated Schiff base in microbial rhodopsins.
Magn Reson Lett. 2024 Apr 25;4(3):200132. doi: 10.1016/j.mrl.2024.200132. eCollection 2024 Aug.
2
Solid-state NMR for the characterization of retinal chromophore and Schiff base in TAT rhodopsin embedded in membranes under weakly acidic conditions.
Biophys Physicobiol. 2023 Mar 2;20(Supplemental):e201017. doi: 10.2142/biophysico.bppb-v20.s017. eCollection 2023 Mar 21.
3
Recent advances in signaling and activation mechanism in microbial rhodopsins: Report for the session 6 at the 19 International Conference on Retinal Proteins.
Biophys Physicobiol. 2023 Jan 25;20(Supplemental):e201009. doi: 10.2142/biophysico.bppb-v20.s009. eCollection 2023 Mar 21.
4
Microbial Rhodopsins.
Methods Mol Biol. 2022;2501:1-52. doi: 10.1007/978-1-0716-2329-9_1.
5
Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022.
6
Exploring the Retinal Binding Cavity of Archaerhodopsin-3 by Replacing the Retinal Chromophore With a Dimethyl Phenylated Derivative.
Front Mol Biosci. 2021 Dec 20;8:794948. doi: 10.3389/fmolb.2021.794948. eCollection 2021.
7
An optogenetic assay method for electrogenic transporters using Escherichia coli co-expressing light-driven proton pump.
Protein Sci. 2021 Oct;30(10):2161-2169. doi: 10.1002/pro.4154. Epub 2021 Jul 10.
8
Flip-Flopping Retinal in Microbial Rhodopsins as a Template for a Farnesyl/Prenyl Flip-Flop Model in Eukaryote GPCRs.
Front Neurosci. 2019 May 7;13:465. doi: 10.3389/fnins.2019.00465. eCollection 2019.
9
Light-Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology.
Adv Sci (Weinh). 2018 Sep 30;6(1):1800952. doi: 10.1002/advs.201800952. eCollection 2019 Jan 9.

本文引用的文献

1
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1512-1521. doi: 10.1016/j.bbapap.2017.08.007. Epub 2017 Aug 24.
2
Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.
Annu Rev Biochem. 2017 Jun 20;86:845-872. doi: 10.1146/annurev-biochem-101910-144233. Epub 2017 Mar 9.
4
Demonstration of a Light-Driven SO Transporter and Its Spectroscopic Characteristics.
J Am Chem Soc. 2017 Mar 29;139(12):4376-4389. doi: 10.1021/jacs.6b12139. Epub 2017 Mar 16.
6
A natural light-driven inward proton pump.
Nat Commun. 2016 Nov 17;7:13415. doi: 10.1038/ncomms13415.
7
The coming of age of de novo protein design.
Nature. 2016 Sep 15;537(7620):320-7. doi: 10.1038/nature19946.
8
Microbial rhodopsins: wide distribution, rich diversity and great potential.
Biophys Physicobiol. 2015 Dec 11;12:121-9. doi: 10.2142/biophysico.12.0_121. eCollection 2015.
9
Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.
J Biol Chem. 2016 Aug 19;291(34):17488-17495. doi: 10.1074/jbc.M116.728220. Epub 2016 Jun 30.
10
X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.
J Biol Chem. 2016 Jun 3;291(23):12223-32. doi: 10.1074/jbc.M116.719815. Epub 2016 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验