Suppr超能文献

技术说明:在 FLUKA 蒙特卡罗系统中定义基于回旋加速器的临床扫描质子机。

Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.

机构信息

CRUK - MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK.

Provision Proton Therapy Center, Knoxville, TN, USA.

出版信息

Med Phys. 2018 Feb;45(2):963-970. doi: 10.1002/mp.12701. Epub 2017 Dec 22.

Abstract

PURPOSE

Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans.

METHODS

The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented.

RESULTS

Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%.

CONCLUSIONS

Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam.

摘要

目的

基于回旋加速器的笔束扫描(PBS)质子设备目前是质子治疗设施中最常见和最具成本效益的选择,然而,与被动散射质子系统或基于同步加速器的 PBS 设备相比,其在蒙特卡罗(MC)代码中的表示更为复杂。这是因为减速器用于将回旋加速器的最大能量降低到所需的能量,从而导致独特的光斑大小、发散度和能量展宽,具体取决于减速的程度。本文概述了一种将基于回旋加速器的 PBS 机器在通用 MC 代码中进行特征化的通用方法。然后可以使用该代码从商业 TPS 计划生成临床相关的计划。

方法

所描述的束流是在美国田纳西州诺克斯维尔的 Provision Proton Therapy Center 使用基于回旋加速器的 IBA Proteus Plus 设备产生的。我们使用 MC FLUKA 中的实验调试数据对 Provision 束进行了特征化。然后,使用水模中的实验数据对代码进行了验证,包括单束和更大不规则野的验证。还展示了与 RayStation TPS 计划的比较。

结果

在水计划中,对实验、模拟和计划剂量沉积的比较表明,在靶区内部,两个程序计算的剂量相同,而在野边缘发现了半影差异。MC 的差异较小,γ(3%-3mm)指数从未低于 95%。

结论

本文提供了有关如何适应 MC 代码来模拟基于回旋加速器的扫描质子机器的详细解释,目的是使用 MC 作为 TPS 验证工具来检查和改进临床计划。对于所有测试案例,我们表明,与实验数据相比,MC 的剂量差异较小,这意味着创建的 FLUKA 束模型能够更好地描述实验束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验