Jin Ding Jun, Mata Martin Carmen, Sun Zhe, Cagliero Cedric, Zhou Yan Ning
a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD.
Crit Rev Biochem Mol Biol. 2017 Feb;52(1):96-106. doi: 10.1080/10409238.2016.1269717. Epub 2016 Dec 23.
We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.
我们已经对原核生物中特定基因、操纵子或转录组的RNA聚合酶(RNA Pol)、转录因子及转录调控机制有了很多了解。然而,我们才刚刚开始理解转录机制是如何在三维空间中组织成细菌染色体区域,以协调转录过程并与细胞中的复制机制保持协调。最近,利用最先进的超分辨率成像技术,我们在理解快速生长的大肠杆菌细胞中转录机制的空间组织方面取得了很大进展。对RNA聚合酶(RNA Pol)与DNA以及参与核糖体RNA(rRNA)合成和核糖体生物发生的转录延伸因子进行共成像,揭示了细菌和真核生物在生长基因转录机制空间组织上的相似性,其中大多数生长基因是rRNA基因。有证据支持这样一种观点,即RNA Pol分子集中在rRNA操纵子簇处形成焦点,类似于真核生物的核仁。RNA Pol焦点被认为是rRNA基因表达和核糖体生物发生的活跃转录工厂,以支持在最佳生长条件下的最大生长。因此,在快速生长的细菌细胞中,RNA Pol焦点模拟真核生物的Pol I活性,转录工厂类似于核仁样区室化。此外,转录和复制机制在空间上大多是分开的,以避免在快速生长的细胞中这两种主要细胞功能之间的冲突。