Suppr超能文献

转录-复制冲突方向调节R环水平并激活不同的DNA损伤反应。

Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

作者信息

Hamperl Stephan, Bocek Michael J, Saldivar Joshua C, Swigut Tomek, Cimprich Karlene A

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cell. 2017 Aug 10;170(4):774-786.e19. doi: 10.1016/j.cell.2017.07.043.

Abstract

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.

摘要

转录与复制之间的冲突是DNA损伤的一个重要来源。共转录R环可通过对复制叉前进形成额外障碍而加剧此类冲突。在这里,我们使用一个明确的附加型系统来研究冲突方向和R环形成如何影响人类细胞中的基因组稳定性。在与复制叉发生冲突时,R环而非正常转录复合物会诱导DNA断裂和方向特异性DNA损伤反应。出乎意料的是,复制体充当R环水平的方向依赖性调节因子,减少同向(CD)方向的R环,但促进其在对头(HO)方向的形成。复制应激和失调的起始点激发增加了HO碰撞的数量,导致基因组不稳定的R环。我们的发现将DNA复制与R环动态平衡联系起来,并为在癌症和其他疾病状态中观察到的DNA复制失调导致的基因组不稳定提供了一个机制基础。

相似文献

2
Looping out of control: R-loops in transcription-replication conflict.
Chromosoma. 2024 Jan;133(1):37-56. doi: 10.1007/s00412-023-00804-8. Epub 2023 Jul 7.
3
Replisome bypass of transcription complexes and R-loops.
Nucleic Acids Res. 2020 Oct 9;48(18):10353-10367. doi: 10.1093/nar/gkaa741.
4
Transcription-Replication Conflicts: Orientation Matters.
Cell. 2017 Aug 10;170(4):603-604. doi: 10.1016/j.cell.2017.07.040.
5
WRNIP1 prevents transcription-associated genomic instability.
Elife. 2024 Mar 15;12:RP89981. doi: 10.7554/eLife.89981.
7
PARP1-mediated PARylation of TonEBP prevents R-loop-associated DNA damage.
DNA Repair (Amst). 2021 Aug;104:103132. doi: 10.1016/j.dnarep.2021.103132. Epub 2021 May 11.
9
R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1.
Int J Mol Sci. 2022 Jan 28;23(3):1547. doi: 10.3390/ijms23031547.
10
R Loops and Their Composite Cancer Connections.
Trends Cancer. 2019 Oct;5(10):619-631. doi: 10.1016/j.trecan.2019.08.006. Epub 2019 Oct 21.

引用本文的文献

1
Chromoanasynthesis.
Methods Mol Biol. 2025;2968:35-51. doi: 10.1007/978-1-0716-4750-9_2.
3
LANA-dependent transcription-replication conflicts and R-loops at the terminal repeats (TR) correlate with KSHV episome maintenance.
PLoS Pathog. 2025 Aug 18;21(8):e1013029. doi: 10.1371/journal.ppat.1013029. eCollection 2025 Aug.
4
Atypical R-loops in cancer: decoding molecular chaos for therapeutic gain.
J Transl Med. 2025 Aug 14;23(1):912. doi: 10.1186/s12967-025-06929-x.
5
AND-1 is a critical regulator of R-loop dynamics and a target to overcome endocrine resistance.
Sci Adv. 2025 Aug 8;11(32):eadv2453. doi: 10.1126/sciadv.adv2453.
8
R-loops shape chromatin architecture to promote balanced lineage allocation during differentiation.
bioRxiv. 2025 Jun 25:2025.06.23.661125. doi: 10.1101/2025.06.23.661125.
10
Small molecule inhibition of CPSF3 impacts R-loop distribution and abundance.
bioRxiv. 2025 May 7:2025.05.07.652284. doi: 10.1101/2025.05.07.652284.

本文引用的文献

1
Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage.
Elife. 2016 Aug 23;5:e17548. doi: 10.7554/eLife.17548.
2
Transcription-replication conflicts: how they occur and how they are resolved.
Nat Rev Mol Cell Biol. 2016 Sep;17(9):553-63. doi: 10.1038/nrm.2016.88. Epub 2016 Jul 20.
3
Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals.
Mol Cell. 2016 Jul 7;63(1):167-78. doi: 10.1016/j.molcel.2016.05.032. Epub 2016 Jun 30.
4
The nature of mutations induced by replication–transcription collisions.
Nature. 2016 Jul 7;535(7610):178-81. doi: 10.1038/nature18316. Epub 2016 Jun 29.
5
Mutation of cancer driver MLL2 results in transcription stress and genome instability.
Genes Dev. 2016 Feb 15;30(4):408-20. doi: 10.1101/gad.275453.115.
6
Replication landscape of the human genome.
Nat Commun. 2016 Jan 11;7:10208. doi: 10.1038/ncomms10208.
7
The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription.
Mol Cell. 2015 Nov 5;60(3):351-61. doi: 10.1016/j.molcel.2015.09.012. Epub 2015 Oct 22.
8
The Fanconi Anemia Pathway Protects Genome Integrity from R-loops.
PLoS Genet. 2015 Nov 19;11(11):e1005674. doi: 10.1371/journal.pgen.1005674. eCollection 2015 Nov.
9
R loops: new modulators of genome dynamics and function.
Nat Rev Genet. 2015 Oct;16(10):583-97. doi: 10.1038/nrg3961. Epub 2015 Sep 15.
10
Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
Cell. 2015 Apr 23;161(3):526-540. doi: 10.1016/j.cell.2015.03.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验