Suppr超能文献

线粒体膜中的非双层结构调节 ATP 合酶活性。

Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.

机构信息

Applied Mathematics and Informatics Department, M.V. Lomonosov Moscow State University Branch, 22-a Amir Timur Avenue, Tashkent 100061, Uzbekistan; Bioenergetics Department, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobievy Gory, Moscow 119991, Russia.

Applied Mathematics and Informatics Department, M.V. Lomonosov Moscow State University Branch, 22-a Amir Timur Avenue, Tashkent 100061, Uzbekistan.

出版信息

Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):586-599. doi: 10.1016/j.bbamem.2017.11.014. Epub 2017 Nov 24.

Abstract

Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using H NMR and P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F sector, and thereby increase ATP synthesis.

摘要

心磷脂(CL)是一种位于线粒体内膜(IMM)的阴离子性磷脂,它有助于形成瞬态非双层(非层状)结构,以维持线粒体的完整性。CL 调节包括 ATP 合成在内的线粒体功能。然而,CL 产生非双层结构的生物物理机制以及这些结构对 ATP 合成的贡献程度仍不清楚。我们假设 CL 和 ATP 合酶促进 IMM 中非双层结构的形成,以刺激 ATP 合成。通过使用 H NMR 和 P NMR 技术,我们观察到升高温度(8°C 至 37°C)、降低 pH 值(3.0)或用 CTII 孵育完整线粒体——一种增加固定非双层结构形成的 IMM 靶向毒素——会增加非双层结构的形成,从而刺激 ATP 合成。ATP 合酶复合物的 F 部分可以促进非双层结构的形成,因为用富含 IMM 特异性磷脂的模型膜孵育外源性 F 部分的 DCCD 结合蛋白(DCCD-BPF)以类似于 CTII 的方式升高固定非双层结构的形成。天然 PAGE 分析表明,CL 而不是其他阴离子性磷脂,特异性地与 DCCD-BPF 结合,以促进稳定的脂质-蛋白复合物的形成。从机制上讲,分子对接研究确定了 DCCD-BPF 中 CL 的两个脂质结合位点。我们提出了一个新的 ATP 合酶调节模型,其中 CL 介导非双层结构的形成,作为聚集质子和 ATP 合酶复合物的一种机制,以增强质子向 F 部分的转移,从而增加 ATP 合成。

相似文献

1
Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):586-599. doi: 10.1016/j.bbamem.2017.11.014. Epub 2017 Nov 24.
2
6
Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes.
Biochim Biophys Acta Biomembr. 2017 Feb;1859(2):257-267. doi: 10.1016/j.bbamem.2016.11.012. Epub 2016 Nov 24.
7
Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles.
J Phys Chem B. 2019 Oct 31;123(43):9111-9122. doi: 10.1021/acs.jpcb.9b07690. Epub 2019 Oct 22.
8
Evaluation of the cardiolipin biosynthetic pathway and its interactions in the diabetic heart.
Life Sci. 2013 Sep 3;93(8):313-22. doi: 10.1016/j.lfs.2013.07.005. Epub 2013 Jul 17.
9
Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function.
Toxins (Basel). 2019 Mar 8;11(3):152. doi: 10.3390/toxins11030152.

引用本文的文献

2
Lipid polymorphism of plant thylakoid membranes. The dynamic exchange model - facts and hypotheses.
Physiol Plant. 2025 Mar-Apr;177(2):e70230. doi: 10.1111/ppl.70230.
3
Peripheral membrane protein endophilin B1 probes, perturbs and permeabilizes lipid bilayers.
Commun Biol. 2025 Feb 5;8(1):182. doi: 10.1038/s42003-025-07610-1.
4
Role of cardiolipin in proton transmembrane flux and localization.
Biophys J. 2025 Jan 21;124(2):408-416. doi: 10.1016/j.bpj.2024.12.015. Epub 2024 Dec 13.
7
The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases.
Cells. 2024 Mar 30;13(7):609. doi: 10.3390/cells13070609.
8
Directed proton transfer from F to F extends the multifaceted proton functions in ATP synthase.
Biophys Rev. 2023 Sep 21;15(5):859-873. doi: 10.1007/s12551-023-01132-y. eCollection 2023 Oct.
10
Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells.
Genes (Basel). 2022 Oct 18;13(10):1889. doi: 10.3390/genes13101889.

本文引用的文献

1
The Possible Role of Nonbilayer Structures in Regulating ATP Synthase Activity in Mitochondrial Membranes.
Biophysics (Oxf). 2016 Jul;61(4):596-600. doi: 10.1134/S0006350916040084. Epub 2016 Oct 19.
3
What are the roles of V-ATPases in membrane fusion?
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):8-9. doi: 10.1073/pnas.1422280112. Epub 2014 Dec 24.
5
Importance of the hexagonal lipid phase in biological membrane organization.
Front Plant Sci. 2013 Dec 3;4:494. doi: 10.3389/fpls.2013.00494. eCollection 2013.
7
Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes.
J Mol Biol. 2012 Nov 9;423(5):677-86. doi: 10.1016/j.jmb.2012.09.001. Epub 2012 Sep 10.
8
The physical state of lipid substrates provides transacylation specificity for tafazzin.
Nat Chem Biol. 2012 Oct;8(10):862-9. doi: 10.1038/nchembio.1064.
9
Oligomycin frames a common drug-binding site in the ATP synthase.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13961-5. doi: 10.1073/pnas.1207912109. Epub 2012 Aug 6.
10
ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology.
Int J Biochem Cell Biol. 2013 Jan;45(1):99-105. doi: 10.1016/j.biocel.2012.05.017. Epub 2012 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验