Suppr超能文献

斑马鱼的主要作用是在胚胎外组织中。

The primary role of zebrafish is in extra-embryonic tissue.

作者信息

Gagnon James A, Obbad Kamal, Schier Alexander F

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Development. 2018 Jan 9;145(1):dev147793. doi: 10.1242/dev.147793.

Abstract

The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish mutants. Whereas zygotic mutants survive to adulthood, maternal-zygotic (MZ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation.

摘要

斑马鱼转录因子Nanog的作用一直存在争议。有人认为,Nanog主要是胚胎外卵黄合胞体层(YSL)正常形成所必需的,并且仅间接调节胚胎细胞中的基因表达。另一种观点认为,Nanog被认为在合子基因组激活期间直接调节胚胎细胞中的转录。为了阐明Nanog的作用,我们对斑马鱼突变体进行了详细分析。虽然合子突变体能够存活至成年,但母源-合子(MZ)和母源突变体在囊胚期表现出发育停滞。在没有Nanog的情况下,YSL的形成和外包异常,胚胎组织与卵黄分离,并且数十种YSL和胚胎基因的表达降低。通过用包含YSL和卵黄细胞的野生型植物组织生成MZ胚胎组织的嵌合胚胎,可以挽救外包缺陷。值得注意的是,缺乏Nanog的细胞很容易对Nodal信号作出反应,并且当移植到野生型宿主中时会增殖并参与来自所有胚层的胚胎组织和成年器官的形成。这些结果表明,斑马鱼Nanog对于YSL的正常发育是必需的,但不是胚胎细胞分化直接所需的。

相似文献

1
The primary role of zebrafish is in extra-embryonic tissue.
Development. 2018 Jan 9;145(1):dev147793. doi: 10.1242/dev.147793.
3
Nile tilapia (Oreochromis niloticus) Nanog co-expression with Pou5f3, transcriptional regulation and biological activity in embyonic development and embryonic cells.
Comp Biochem Physiol B Biochem Mol Biol. 2023 Feb-Mar;264:110812. doi: 10.1016/j.cbpb.2022.110812. Epub 2022 Nov 15.
4
Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors.
PLoS Biol. 2020 Jul 23;18(7):e3000561. doi: 10.1371/journal.pbio.3000561. eCollection 2020 Jul.
5
Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway.
Dev Cell. 2012 Mar 13;22(3):625-38. doi: 10.1016/j.devcel.2012.01.003.
6
Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition.
Nature. 2013 Nov 21;503(7476):360-4. doi: 10.1038/nature12632. Epub 2013 Sep 22.
7
The role of the yolk syncytial layer in germ layer patterning in zebrafish.
Development. 2000 Nov;127(21):4681-9. doi: 10.1242/dev.127.21.4681.
8
Zygotic Genome Activators, Developmental Timing, and Pluripotency.
Curr Top Dev Biol. 2016;116:273-97. doi: 10.1016/bs.ctdb.2015.12.004. Epub 2016 Feb 13.
9
Morphofunctional transformations of the yolk syncytial layer during zebrafish development.
J Morphol. 2014 Feb;275(2):206-16. doi: 10.1002/jmor.20209. Epub 2013 Oct 12.

引用本文的文献

2
Advances in development of long-term embryonic stem cell-like cultures from a marine fish, .
Curr Res Food Sci. 2024 Sep 13;9:100841. doi: 10.1016/j.crfs.2024.100841. eCollection 2024.
3
Research progress of nanog gene in fish.
Mol Genet Genomics. 2024 Sep 24;299(1):88. doi: 10.1007/s00438-024-02182-x.
4
miR-430 regulates zygotic mRNA during zebrafish embryogenesis.
Genome Biol. 2024 Mar 19;25(1):74. doi: 10.1186/s13059-024-03197-8.
5
Maternal regulates zebrafish epiboly through Yap1 activity.
Front Cell Dev Biol. 2024 Feb 20;12:1362695. doi: 10.3389/fcell.2024.1362695. eCollection 2024.
6
NANOG is required to establish the competence for germ-layer differentiation in the basal tetrapod axolotl.
PLoS Biol. 2023 Jun 14;21(6):e3002121. doi: 10.1371/journal.pbio.3002121. eCollection 2023 Jun.
7
The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation.
Mol Cell. 2022 Mar 3;82(5):986-1002.e9. doi: 10.1016/j.molcel.2022.01.024. Epub 2022 Feb 18.
8
Pluripotency factors determine gene expression repertoire at zygotic genome activation.
Nat Commun. 2022 Feb 10;13(1):788. doi: 10.1038/s41467-022-28434-1.
10
Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors.
PLoS Biol. 2020 Jul 23;18(7):e3000561. doi: 10.1371/journal.pbio.3000561. eCollection 2020 Jul.

本文引用的文献

3
Whole-organism lineage tracing by combinatorial and cumulative genome editing.
Science. 2016 Jul 29;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub 2016 May 26.
4
Zygotic Genome Activators, Developmental Timing, and Pluripotency.
Curr Top Dev Biol. 2016;116:273-97. doi: 10.1016/bs.ctdb.2015.12.004. Epub 2016 Feb 13.
5
Establishing pluripotency in early development.
Biochim Biophys Acta. 2015 Jun;1849(6):626-36. doi: 10.1016/j.bbagrm.2015.03.006. Epub 2015 Apr 7.
6
High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies.
Cell. 2014 Dec 18;159(7):1698-710. doi: 10.1016/j.cell.2014.11.015. Epub 2014 Dec 11.
7
New insights into the maternal to zygotic transition.
Development. 2014 Oct;141(20):3834-41. doi: 10.1242/dev.102368.
8
Zygotic genome activation during the maternal-to-zygotic transition.
Annu Rev Cell Dev Biol. 2014;30:581-613. doi: 10.1146/annurev-cellbio-100913-013027. Epub 2014 Aug 11.
9
Molecular control of induced pluripotency.
Cell Stem Cell. 2014 Jun 5;14(6):720-34. doi: 10.1016/j.stem.2014.05.002.
10
Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.
PLoS One. 2014 May 29;9(5):e98186. doi: 10.1371/journal.pone.0098186. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验