Suppr超能文献

用于增强丙型肝炎病毒DNA疫苗接种的电振荡等离子体纳米颗粒

Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination against Hepatitis C Virus.

作者信息

Draz Mohamed Shehata, Wang Ying-Jie, Chen Frank Fanqing, Xu Yuhong, Shafiee Hadi

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Faculty of Science Tanta University Tanta 31527, Egypt. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China.

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China.

出版信息

Adv Funct Mater. 2017 Feb 3;27(5). doi: 10.1002/adfm.201604139. Epub 2016 Dec 14.

Abstract

The promise of DNA vaccines is far-reaching. However, the development of potent immunization methods remains a key challenge for its use in clinical applications. Here, an approach for in vivo DNA vaccination by electrically activated plasmonic Au nanoparticles is reported. The electrical excitation of plasmonic nanoparticles can drive vibrational and dipole-like oscillations that are able to disrupt nearby cell membranes. In combination with their intrinsic ability to focus and magnify the electric field on the surface of cells, Au nanoparticles allow enhanced cell poration and facilitate the uptake of DNA vaccine. Mice immunized with this approach showed up to 100-fold higher gene expression compared to control treatments (without nanoparticles) and exhibited significantly increased levels of both antibody and cellular immune responses against a model hepatitis C virus DNA vaccine. This approach can be tuned to establish controlled and targeted delivery of different types of therapeutic molecules into cells and live animals as well.

摘要

DNA疫苗前景广阔。然而,开发有效的免疫方法仍是其临床应用面临的关键挑战。在此,报道了一种通过电激活等离子体金纳米颗粒进行体内DNA疫苗接种的方法。等离子体纳米颗粒的电激发可驱动振动和偶极样振荡,从而破坏附近的细胞膜。结合其在细胞表面聚焦和放大电场的固有能力,金纳米颗粒可增强细胞穿孔并促进DNA疫苗的摄取。与对照处理(无纳米颗粒)相比,用这种方法免疫的小鼠基因表达高出多达100倍,并且针对模型丙型肝炎病毒DNA疫苗的抗体和细胞免疫反应水平均显著提高。这种方法可进行调整,以实现将不同类型的治疗分子可控且靶向地递送至细胞以及活体动物体内。

相似文献

3
Nanotechnological selection.纳米技术选择。
Nanotechnology. 2013 Jan 18;24(2):020201. doi: 10.1088/0957-4484/24/2/020201. Epub 2012 Dec 14.

引用本文的文献

3
A review of immune modulators and immunotherapy in infectious diseases.免疫调节剂和免疫疗法在传染病中的研究进展。
Mol Cell Biochem. 2024 Aug;479(8):1937-1955. doi: 10.1007/s11010-023-04825-w. Epub 2023 Sep 8.
9
Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy.刺激响应型纳米载体在基因治疗中的最新进展。
Adv Sci (Weinh). 2021 May 16;8(14):2100540. doi: 10.1002/advs.202100540. eCollection 2021 Jul.
10
Glycan Nanostructures of Human Coronaviruses.人类冠状病毒的糖纳米结构。
Int J Nanomedicine. 2021 Jul 15;16:4813-4830. doi: 10.2147/IJN.S302516. eCollection 2021.

本文引用的文献

2
Progress towards a hepatitis C virus vaccine.丙型肝炎病毒疫苗的进展。
Emerg Microbes Infect. 2013 Nov;2(11):e79. doi: 10.1038/emi.2013.79. Epub 2013 Nov 20.
5
Nanoparticle vaccines.纳米颗粒疫苗。
Vaccine. 2014 Jan 9;32(3):327-37. doi: 10.1016/j.vaccine.2013.11.069. Epub 2013 Dec 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验