Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Cleveland, Ohio.
JAMA Neurol. 2018 Feb 1;75(2):194-202. doi: 10.1001/jamaneurol.2017.3344.
A better understanding of the role of cortical structures in blood pressure control may help us understand cardiovascular collapse that may lead to sudden unexpected death in epilepsy (SUDEP).
To identify cortical control sites for human blood pressure regulation.
DESIGN, SETTING, AND PARTICIPANTS: Patients with intractable epilepsy undergoing intracranial electrode implantation as a prelude to epilepsy surgery in the Epilepsy Monitoring Unit at University Hospitals Cleveland Medical Center were potential candidates for this study. Inclusion criteria were patients 18 years or older who had electrodes implanted in one or more of the regions of interest and in whom deep brain electrical stimulation was indicated for mapping of ictal onset or eloquent cortex as a part of the presurgical evaluation. Twelve consecutive patients were included in this prospective case series from June 1, 2015, to February 28, 2017.
Changes in continuous, noninvasive, beat-by-beat blood pressure parameter responses from amygdala, hippocampal, insular, orbitofrontal, temporal, cingulate, and subcallosal stimulation. Electrocardiogram, arterial oxygen saturation, end-tidal carbon dioxide, nasal airflow, and abdominal and thoracic plethysmography were monitored.
Among 12 patients (7 female; mean [SD] age, 44.25 [12.55] years), 9 electrodes (7 left and 2 right) all in Brodmann area 25 (subcallosal neocortex) in 4 patients produced striking systolic hypotensive changes. Well-maintained diastolic arterial blood pressure and narrowed pulse pressure indicated stimulation-induced reduction in sympathetic drive and consequent probable reduction in cardiac output rather than bradycardia or peripheral vasodilation-induced hypotension. Frequency-domain analysis of heart rate and blood pressure variability showed a mixed picture. No other stimulated structure produced significant blood pressure changes.
These findings suggest that Brodmann area 25 has a role in lowering systolic blood pressure in humans. It is a potential symptomatogenic zone for peri-ictal hypotension in patients with epilepsy.
更好地了解皮质结构在血压控制中的作用可能有助于我们理解癫痫(SUDEP)中可能导致心血管衰竭的原因。
确定人类血压调节的皮质控制部位。
设计、设置和参与者:作为克利夫兰大学医院癫痫监测单元癫痫手术前导的颅内电极植入的难治性癫痫患者是这项研究的潜在候选者。纳入标准为年龄在 18 岁或以上的患者,他们在一个或多个感兴趣区域植入电极,并且由于深部脑电刺激需要对癫痫发作起始或优势皮层进行映射,因此需要进行深脑电刺激,这是术前评估的一部分。从 2015 年 6 月 1 日至 2017 年 2 月 28 日,连续纳入了 12 名连续患者,进行了这项前瞻性病例系列研究。
杏仁核、海马、岛叶、眶额、颞叶、扣带回和胼胝体刺激时连续、非侵入性、逐搏血压参数反应的变化。监测心电图、动脉血氧饱和度、呼气末二氧化碳、鼻气流以及腹部和胸部体积描记法。
在 12 名患者(7 名女性;平均[SD]年龄,44.25[12.55]岁)中,4 名患者的 9 个电极(7 个左侧和 2 个右侧)均位于 Brodmann 区 25 区(胼胝体新皮质),均引起显著的收缩压低血压变化。维持良好的舒张压和缩小的脉压表明刺激引起的交感神经驱动减少,继而可能导致心输出量减少,而不是心动过缓或外周血管扩张引起的低血压。心率和血压变异性的频域分析显示出混合的结果。没有其他刺激的结构产生显著的血压变化。
这些发现表明,Brodmann 区 25 在人类降低收缩压方面起作用。它可能是癫痫患者癫痫发作期间低血压的症状形成区。