From the Epilepsy Center (N.L., J.P.H., J.P.M., S.L.), University Hospitals Cleveland Medical Center, OH; Department of Neurobiology and the Brain Research Institute (R.M.H.), University of California, Los Angeles; and NINDS Center for SUDEP Research (R.M.H., S.L.), Case Western Reserve University, Cleveland, OH.
Neurology. 2019 Feb 12;92(7):e655-e669. doi: 10.1212/WNL.0000000000006920. Epub 2019 Jan 11.
To precisely identify cortical regions that modulate breathing, and delineate a network of cortical structures that underpin ictal central apnea (ICA) during epileptic seizures.
We electrically stimulated multiple cortical structures in patients undergoing stereotactic EEG (SEEG) evaluation before epilepsy surgery. Structures investigated were orbitofrontal cortex, anterior and posterior cingulate and subcallosal gyri, insula, hippocampus, parahippocampal gyrus, amygdala, temporo-polar cortex, antero-mesial fusiform gyrus, and lateral and basal temporal cortices. Chest/abdominal excursions using thoracic/abdominal belts, peripheral capillary oxygen saturation, end tidal and transcutaneous carbon dioxide, and airflow were continuously monitored.
Nineteen consecutive adult patients (10 female) aged 18-69 years were investigated. Transient central apnea was elicited in 13/19 patients with amygdala, hippocampus head and body, anterior parahippocampal gyrus, and antero-mesial fusiform gyrus. Insula, cingulate, subcallosal, orbitofrontal, lateral, and basal temporal cortices stimulation did not induce apnea. Apnea duration was associated with stimulus duration ( < 0.001) and current intensity ( = 0.004).
These findings suggest a limbic/paralimbic mesial temporal breathing modulation network that includes amygdala, hippocampus, anterior parahippocampal, and antero-mesial fusiform gyri. These structures likely represent anatomical and functional substrates for ICA, a putative sudden unexpected death in epilepsy (SUDEP) breathing biomarker. Damage to such areas is known to occur in high SUDEP risk patients and SUDEP victims, and may underpin the prolonged ICA that is thought to be particularly dangerous. Furthermore, inclusive targeting of apnea-producing structures in SEEG implantations, peri-ictal breathing signal recordings, and stringent analysis of apneic sequences in seizure semiology may enhance accurate identification of symptomatogenic and seizure onset zones for epilepsy surgery.
精确识别调节呼吸的皮质区域,并描绘出一个皮质结构网络,该网络为癫痫发作期间的中枢性呼吸暂停(ICA)提供基础。
我们在接受立体脑电图(SEEG)评估的癫痫手术前患者中电刺激多个皮质结构。研究的结构包括眶额皮质、前后扣带和胼胝体下回、岛叶、海马体、海马旁回、杏仁核、颞极皮质、前内梭状回和外侧及基底颞叶皮质。使用胸/腹带连续监测胸部/腹部运动、外周毛细血管血氧饱和度、潮气末和经皮二氧化碳以及气流。
研究了 19 例连续的成年患者(10 例女性),年龄 18-69 岁。13/19 例患者的杏仁核、海马头部和体部、前旁海马回和前内梭状回诱发短暂的中枢性呼吸暂停。岛叶、扣带回、胼胝体下、眶额、外侧和基底颞叶皮质刺激不会引起呼吸暂停。呼吸暂停持续时间与刺激持续时间(<0.001)和电流强度(=0.004)相关。
这些发现提示存在一个边缘/旁边缘内侧颞叶呼吸调节网络,该网络包括杏仁核、海马体、前旁海马回和前内梭状回。这些结构可能代表 ICA 的解剖学和功能基础,是一种潜在的癫痫猝死(SUDEP)呼吸生物标志物。已知此类区域的损伤在高 SUDEP 风险患者和 SUDEP 受害者中发生,并且可能是导致被认为特别危险的延长 ICA 的原因。此外,在 SEEG 植入物中靶向产生呼吸暂停的结构、记录peri-ictal 呼吸信号以及在癫痫发作半影学中严格分析呼吸暂停序列,可能会增强对癫痫手术的症状发生区和发作起始区的准确识别。