Suppr超能文献

真实患者及其虚拟双胞胎:定量系统毒理学模型在西酞普兰心脏安全性评估中的应用。

Real Patient and its Virtual Twin: Application of Quantitative Systems Toxicology Modelling in the Cardiac Safety Assessment of Citalopram.

机构信息

Simcyp Limited, a Certara Company, Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK.

Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.

出版信息

AAPS J. 2017 Nov 27;20(1):6. doi: 10.1208/s12248-017-0155-8.

Abstract

A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I, I, I); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation. The inclusion of multiple ion channel current inhibition and metabolites in the simulation with unbound plasma citalopram concentration provided the lowest prediction error. The predictive performance of the model was verified with three additional therapeutic and supra-therapeutic drug exposure clinical cases. The results indicate that considering only the hERG ion channel inhibition of only the parent drug is potentially misleading, and the inclusion of active metabolite data and the influence of other ion channel currents should be considered to improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge the gaps existing in the quantitative translation from preclinical cardiac safety assessment to clinical toxicology. Moreover, this study shows that the QST models, in combination with appropriate drug and systems parameters, can pave the way towards personalised safety assessment.

摘要

建立了一种用于西酞普兰的定量系统毒理学(QST)模型,以模拟真实患者的“虚拟双胞胎”,从而预测先前在各种临床情况下接受治疗的患者中报告的心毒性事件的发生。该 QST 模型考虑了西酞普兰及其最显著的电生理活性主要(去甲西酞普兰)和次要(二甲西酞普兰)代谢物对心脏电生理学的影响。体外心脏离子通道电流抑制数据与详细的人类心脏电生理学模型相结合,研究了以下因素对(i)多种离子电流(I、I、I)抑制的影响;(ii)代谢物在 QST 模型中的包含;以及(iii)以游离或总血浆作为作用药物浓度,对预测临床上观察到的 QT 延长的影响。在模拟中,同时考虑多种离子通道电流抑制和代谢物,以及游离血浆西酞普兰浓度,提供了最低的预测误差。该模型的预测性能通过另外三个治疗和超治疗药物暴露的临床病例进行了验证。结果表明,仅考虑主要药物对 hERG 离子通道的抑制可能具有误导性,并且应考虑包含活性代谢物数据和其他离子通道电流的影响,以提高对潜在心脏毒性的预测。机制模型可以帮助缩小从临床前心脏安全性评估到临床毒理学的定量转化中存在的差距。此外,本研究表明,QST 模型结合适当的药物和系统参数,可以为个性化安全性评估铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验