Ou Qi, Subotnik Joseph E
Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
J Chem Theory Comput. 2018 Feb 13;14(2):527-542. doi: 10.1021/acs.jctc.7b00246. Epub 2018 Jan 8.
We calculate the excitation energies of finite 1D Hubbard chains with a variety of different site energies from two perspectives: (i) the physics-based Bethe-Salpeter equation (BSE) method and (ii) the chemistry-based configuration interaction (CI) approach. Results obtained from all methods are compared against the exact values for three classes of systems: metallic, impurity-doped, and molecular (semiconducting/insulating) systems. While in a previous study we showed that the GW method holds comparative advantages versus traditional quantum chemistry approaches for calculating the ionization potentials and electron affinities across a large range of Hamiltonians, we show now that the BSE method outperforms CI approaches only for metallic and semiconducting systems. For insulating molecular systems, CI approaches generate better results.
(i)基于物理的贝塞耳-萨尔皮特方程(BSE)方法,以及(ii)基于化学的组态相互作用(CI)方法。将所有方法得到的结果与三类系统的精确值进行了比较:金属系统、杂质掺杂系统和分子(半导体/绝缘)系统。虽然在之前的一项研究中我们表明,在计算大范围哈密顿量的电离势和电子亲和势方面,GW方法相对于传统量子化学方法具有比较优势,但我们现在表明,BSE方法仅在金属和半导体系统中优于CI方法。对于绝缘分子系统,CI方法能产生更好的结果。