Kaufholdt David, Baillie Christin-Kirsty, Meinen Rieke, Mendel Ralf R, Hänsch Robert
Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany.
Front Plant Sci. 2017 Nov 14;8:1946. doi: 10.3389/fpls.2017.01946. eCollection 2017.
Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.
植物和几乎所有生物体的生存都依赖于基于蝶呤的钼辅因子(Moco)及其有效的生物合成以及插入脱辅基酶中。为此,中心Moco生物合成酶的特性已得到表征,并且Moco生物合成的保守四步反应途径也已被充分理解。然而,在生物合成过程中防止降解的保护机制以及对高度氧敏感的Moco及其中间体的转移尚未完全阐明。涉及瞬时蛋白质-蛋白质相互作用的蛋白质复合物的形成是保护敏感分子进行代谢通道化的有效策略。在这篇综述中,展示并讨论了Moco生物合成和分配网络。该网络基于两种相互作用方法进行了深入研究:双分子荧光互补(BiFC)和分裂荧光素酶。虽然BiFC可以定位相互作用的伙伴,但分裂荧光素酶测定法可确定相互作用强度。结果表明:(i)线粒体中的Cnx2和Cnx3相互作用;(ii)包括胞质酶Cnx5、Cnx6、Cnx7和Cnx1的生物合成复合物的组装,这使得中间体能够得到保护地转移。整个复合物通过作为锚定蛋白的Cnx1与肌动蛋白丝相关联。生物合成后,Moco需要被传递给特定的脱辅基酶。发现了一条潜在途径。亚硫酸盐氧化酶家族的含钼酶直接与Cnx1相互作用。相比之下,黄嘌呤氧化还原酶家族通过Moco结合蛋白(MoBP2)和Moco硫化酶ABA3间接获得Moco。总之,所揭示的相互作用矩阵通过微区室化实现了中间体和产物保护的高效转移。