文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用荧光亲脂性膜染料进行囊泡摄取研究中的混杂因素。

Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes.

作者信息

Takov Kaloyan, Yellon Derek M, Davidson Sean M

机构信息

The Hatter Cardiovascular Institute, University College London, London, UK.

出版信息

J Extracell Vesicles. 2017 Oct 12;6(1):1388731. doi: 10.1080/20013078.2017.1388731. eCollection 2017.


DOI:10.1080/20013078.2017.1388731
PMID:29184625
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5699187/
Abstract

Small extracellular vesicles (sEVs) such as exosomes are nanocarriers of proteins, RNAs and DNAs. Isolation of pure sEV populations remains challenging, with reports of protein and lipoprotein contaminants in the isolates. Cellular uptake - a cornerstone for understanding exosome and sEV function - is frequently examined using lipophilic dyes such as PKH67 or CellMask to label the vesicles. In this study, we investigated whether contaminants can confound the outcomes from sEV and exosomes uptake experiments. sEVs were isolated from blood plasma of fasted or non-fasted rats as well as from serum-supplemented or serum-free conditioned cell culture medium using size-exclusion chromatography (SEC). Eluent fractions were characterized using nanoparticle tracking, protein and triglyceride assays and immunoassays. SEC fractions were labelled with different lipophilic dyes and cellular uptake was quantified using endothelial cells or primary cardiomyocytes. We report co-isolation of sEVs with apolipoprotein B-containing lipoproteins. Cellular dye transfer did not correspond to sEV content of the SEC fractions, but was severely affected by lipoprotein and protein content. Overnight fasting of rats decreased lipoprotein content and also decreased dye transfer, while late, sEV-poor/protein-rich fractions demonstrated even greater dye transfer. The potential for dye transfer to occur in the complete absence of sEVs was clearly shown by experiments using staining of sEV-depleted serum or pure protein sample. In conclusion, proteins and lipoproteins can make a substantial contribution to transfer of lipophilic dyes to recipient cells. Considering the likelihood of contamination of sEV and exosome isolates, lipophilic dye staining experiments should be carefully controlled, and conclusions interpreted with caution.

摘要

小细胞外囊泡(sEVs),如外泌体,是蛋白质、RNA和DNA的纳米载体。分离纯的sEV群体仍然具有挑战性,有报道称分离物中存在蛋白质和脂蛋白污染物。细胞摄取——理解外泌体和sEV功能的基石——经常使用亲脂性染料如PKH67或CellMask来标记囊泡进行检测。在本研究中,我们调查了污染物是否会混淆sEV和外泌体摄取实验的结果。使用尺寸排阻色谱法(SEC)从禁食或未禁食大鼠的血浆以及血清补充或无血清条件细胞培养基中分离sEV。使用纳米颗粒跟踪、蛋白质和甘油三酯测定以及免疫测定对洗脱级分进行表征。用不同的亲脂性染料标记SEC级分,并使用内皮细胞或原代心肌细胞对细胞摄取进行定量。我们报告了sEV与含载脂蛋白B的脂蛋白的共分离。细胞染料转移与SEC级分的sEV含量不对应,但受到脂蛋白和蛋白质含量的严重影响。大鼠过夜禁食降低了脂蛋白含量,也降低了染料转移,而后期、sEV含量低/蛋白质含量高的级分显示出甚至更大的染料转移。使用耗尽sEV的血清或纯蛋白质样品进行的实验清楚地表明了在完全没有sEV的情况下发生染料转移的可能性。总之,蛋白质和脂蛋白可对亲脂性染料向受体细胞的转移做出重大贡献。考虑到sEV和外泌体分离物受污染的可能性,亲脂性染料染色实验应仔细控制,对结论的解释应谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/3c5283e05fac/ZJEV_A_1388731_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/f1c69cc65a05/ZJEV_A_1388731_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/10218c73bdf8/ZJEV_A_1388731_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/be48afa9517c/ZJEV_A_1388731_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/56e2031ce63c/ZJEV_A_1388731_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/65955fff044a/ZJEV_A_1388731_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/f9855e723a3f/ZJEV_A_1388731_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/3c5283e05fac/ZJEV_A_1388731_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/f1c69cc65a05/ZJEV_A_1388731_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/10218c73bdf8/ZJEV_A_1388731_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/be48afa9517c/ZJEV_A_1388731_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/56e2031ce63c/ZJEV_A_1388731_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/65955fff044a/ZJEV_A_1388731_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/f9855e723a3f/ZJEV_A_1388731_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e84/5699187/3c5283e05fac/ZJEV_A_1388731_F0007_OC.jpg

相似文献

[1]
Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes.

J Extracell Vesicles. 2017-10-12

[2]
Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential.

J Extracell Vesicles. 2018-12-28

[3]
Expression of the αVβ3 integrin affects prostate cancer sEV cargo and density and promotes sEV pro-tumorigenic activity in vivo through a GPI-anchored receptor, NgR2.

J Extracell Vesicles. 2024-8

[4]
Conditioning period impacts the morphology and proliferative effect of extracellular vesicles derived from rat adipose tissue derived stromal cell.

J Nanobiotechnology. 2025-3-4

[5]
Characterization of serum small extracellular vesicles and their small RNA contents across humans, rats, and mice.

Sci Rep. 2020-3-6

[6]
Activation of Inflammation by MCF-7 Cells-Derived Small Extracellular Vesicles (sEV): Comparison of Three Different Isolation Methods of sEV.

Pharm Res. 2023-4

[7]
A novel approach for large-scale manufacturing of small extracellular vesicles from bone marrow-derived mesenchymal stromal cells using a hollow fiber bioreactor.

Front Bioeng Biotechnol. 2023-1-24

[8]
Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma.

J Transl Med. 2018-1-9

[9]
Isolating Small Extracellular Vesicles from Small Volumes of Blood Plasma using size exclusion chromatography and density gradient ultracentrifugation: A Comparative Study.

bioRxiv. 2025-1-22

[10]
Impact of Isolation Methods on Extracellular Vesicle Functionality In Vitro and In Vivo.

Adv Biol (Weinh). 2024-2

引用本文的文献

[1]
Comparative Assessment of Whole Organ Tissue Processing Methods for the Isolation of Extracellular Vesicles From Intact Organs.

J Extracell Vesicles. 2025-9

[2]
Quantum Dot-Based Immunolabelling of Extracellular Vesicles and Detection Using Fluorescence-Based Nanoparticle Tracking Analysis.

J Extracell Biol. 2025-7-22

[3]
Hypoxic Neural Stem Cells Enhance Spinal Cord Repair Through HIF-1a/RAB17-Driven Extracellular Vesicle Release.

J Extracell Vesicles. 2025-7

[4]
Extracellular vesicles from a model of melanoma cancer-associated fibroblasts induce changes in brain microvascular cells consistent with pre-metastatic niche priming.

bioRxiv. 2025-5-10

[5]
Nanostructured organic sheets sequestering small extracellular vesicles and reactive species to protect against radiation-induced mucositis.

Nat Commun. 2025-7-3

[6]
Current trends in theranostic applications of extracellular vesicles in cancer.

Front Oncol. 2025-6-3

[7]
Non-Specific Particle Formation During Extracellular Vesicle Labelling With the Lipophilic Membrane Dye PKH26.

J Extracell Vesicles. 2025-5

[8]
Therapeutic Approaches and Potential Mechanisms of Small Extracellular Vesicles in Treating Vascular Dementia.

Cells. 2025-3-11

[9]
A cautionary note on the potential pitfalls of using N-terminal truncated CD63 to label small extracellular vesicles.

Sci Rep. 2025-3-1

[10]
HBV-associated hepatocellular carcinomas inhibit antitumor CD8 T cell via the long noncoding RNA HDAC2-AS2.

Nat Commun. 2025-2-28

本文引用的文献

[1]
Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.

Cardiovasc Res. 2017-5-1

[2]
Experimental, Systems, and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients.

Circ Res. 2017-2-17

[3]
Exosomes and Cardiovascular Protection.

Cardiovasc Drugs Ther. 2017-2

[4]
Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection.

Sci Rep. 2016-4-18

[5]
ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles.

Sci Rep. 2016-4-12

[6]
Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.

Proc Natl Acad Sci U S A. 2016-2-23

[7]
Microvesicles and exosomes: new players in metabolic and cardiovascular disease.

J Endocrinol. 2016-2

[8]
Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods.

PLoS One. 2015-12-21

[9]
Studying extracellular vesicle transfer by a Cre-loxP method.

Nat Protoc. 2015-12-10

[10]
Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes.

Cardiovasc Res. 2016-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索