Suppr超能文献

通过剪接调控和基因编辑实现杜氏肌营养不良症的分子矫正。

Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.

机构信息

Department of Paediatrics, University of Oxford, Oxford, UK.

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

出版信息

RNA Biol. 2021 Jul;18(7):1048-1062. doi: 10.1080/15476286.2021.1874161. Epub 2021 Jan 20.

Abstract

Duchenne muscular dystrophy (DMD) is a currently incurable X-linked neuromuscular disorder, characterized by progressive muscle wasting and premature death, typically as a consequence of cardiac failure. DMD-causing mutations in the dystrophin gene are highly diverse, meaning that the development of a universally-applicable therapy to treat all patients is very challenging. The leading therapeutic strategy for DMD is antisense oligonucleotide-mediated splice modulation, whereby one or more specific exons are excluded from the mature dystrophin mRNA in order to correct the translation reading frame. Indeed, three exon skipping oligonucleotides have received FDA approval for use in DMD patients. Second-generation exon skipping drugs (i.e. peptide-antisense oligonucleotide conjugates) exhibit enhanced potency, and also induce dystrophin restoration in the heart. Similarly, multiple additional antisense oligonucleotide drugs targeting various exons are in clinical development in order to treat a greater proportion of DMD patient mutations. Relatively recent advances in the field of genome engineering (specifically, the development of the CRISPR/Cas system) have provided multiple promising therapeutic approaches for the RNA-directed genetic correction of DMD, including exon excision, exon reframing via the introduction of insertion/deletion mutations, disruption of splice signals to promote exon skipping, and the templated correction of point mutations by seamless homology directed repair or base editing technology. Potential limitations to the clinical translation of the splice modulation and gene editing approaches are discussed, including drug delivery, the importance of uniform dystrophin expression in corrected myofibres, safety issues (e.g. renal toxicity, viral vector immunogenicity, and off-target gene editing), and the high cost of therapy.

摘要

杜氏肌营养不良症(DMD)是一种目前无法治愈的 X 连锁神经肌肉疾病,其特征是进行性肌肉萎缩和过早死亡,通常是心力衰竭的结果。导致肌营养不良蛋白基因突变的 DMD 非常多样化,这意味着开发一种普遍适用于所有患者的治疗方法极具挑战性。DMD 的主要治疗策略是反义寡核苷酸介导的剪接调节,通过该策略可以从成熟的肌营养不良蛋白 mRNA 中排除一个或多个特定外显子,从而纠正翻译阅读框。事实上,已有三种外显子跳跃寡核苷酸获得 FDA 批准用于 DMD 患者。第二代外显子跳跃药物(即肽-反义寡核苷酸缀合物)具有更高的效力,并且还可以在心脏中诱导肌营养不良蛋白的恢复。同样,为了治疗更大比例的 DMD 患者突变,还有多种针对各种外显子的额外反义寡核苷酸药物正在临床开发中。基因组工程领域的相对较新进展(具体来说,是 CRISPR/Cas 系统的发展)为 DMD 的 RNA 导向遗传纠正提供了多种有前途的治疗方法,包括外显子切除、通过插入/缺失突变引入外显子重排、破坏剪接信号以促进外显子跳跃,以及通过无缝同源定向修复或碱基编辑技术模板化纠正点突变。讨论了剪接调节和基因编辑方法在临床转化中的潜在局限性,包括药物输送、纠正肌纤维中均匀肌营养不良蛋白表达的重要性、安全性问题(例如肾毒性、病毒载体免疫原性和脱靶基因编辑)以及治疗的高成本。

相似文献

1
Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
RNA Biol. 2021 Jul;18(7):1048-1062. doi: 10.1080/15476286.2021.1874161. Epub 2021 Jan 20.
2
Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy.
Mol Ther. 2017 Nov 1;25(11):2561-2572. doi: 10.1016/j.ymthe.2017.07.014. Epub 2017 Jul 28.
5
Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides.
Nucleic Acid Ther. 2014 Feb;24(1):57-68. doi: 10.1089/nat.2013.0451. Epub 2013 Dec 31.
8
Designing Effective Antisense Oligonucleotides for Exon Skipping.
Methods Mol Biol. 2018;1687:143-155. doi: 10.1007/978-1-4939-7374-3_10.
9
In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
Methods Mol Biol. 2018;1828:151-163. doi: 10.1007/978-1-4939-8651-4_9.

引用本文的文献

3
G-Quadruplex-Based Splice Switching as a Therapeutic Approach in Duchenne Muscular Dystrophy.
ACS Chem Biol. 2025 Mar 21;20(3):670-679. doi: 10.1021/acschembio.4c00805. Epub 2025 Mar 3.
4
Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9000-9018. doi: 10.1021/acsami.4c19340. Epub 2025 Jan 28.
5
Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model.
Nat Commun. 2024 Jul 15;15(1):5927. doi: 10.1038/s41467-024-50340-x.
7
Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases.
Biomedicines. 2023 Oct 8;11(10):2725. doi: 10.3390/biomedicines11102725.
8
Therapeutic approaches for Duchenne muscular dystrophy.
Nat Rev Drug Discov. 2023 Nov;22(11):917-934. doi: 10.1038/s41573-023-00775-6. Epub 2023 Aug 31.
9
Duchenne muscular dystrophy: disease mechanism and therapeutic strategies.
Front Physiol. 2023 Jun 26;14:1183101. doi: 10.3389/fphys.2023.1183101. eCollection 2023.
10
What Can RNA-Based Therapy Do for Monogenic Diseases?
Pharmaceutics. 2023 Jan 12;15(1):260. doi: 10.3390/pharmaceutics15010260.

本文引用的文献

1
Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
Mol Ther. 2020 Dec 2;28(12):2527-2539. doi: 10.1016/j.ymthe.2020.10.005. Epub 2020 Oct 14.
2
Risdiplam: First Approval.
Drugs. 2020 Nov;80(17):1853-1858. doi: 10.1007/s40265-020-01410-z.
3
The first human trial of CRISPR-based cell therapy clears safety concerns as new treatment for late-stage lung cancer.
Signal Transduct Target Ther. 2020 Aug 25;5(1):168. doi: 10.1038/s41392-020-00283-8.
4
Advances in oligonucleotide drug delivery.
Nat Rev Drug Discov. 2020 Oct;19(10):673-694. doi: 10.1038/s41573-020-0075-7. Epub 2020 Aug 11.
5
High-dose AAV gene therapy deaths.
Nat Biotechnol. 2020 Aug;38(8):910. doi: 10.1038/s41587-020-0642-9.
6
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
8
Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system.
Sci Adv. 2020 Feb 19;6(8):eaay6812. doi: 10.1126/sciadv.aay6812. eCollection 2020 Feb.
9
Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology.
J Cachexia Sarcopenia Muscle. 2020 Apr;11(2):578-593. doi: 10.1002/jcsm.12506. Epub 2019 Dec 17.
10
AAV-Mediated Gene Transfer Restores a Normal Muscle Transcriptome in a Canine Model of X-Linked Myotubular Myopathy.
Mol Ther. 2020 Feb 5;28(2):382-393. doi: 10.1016/j.ymthe.2019.10.018. Epub 2019 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验