Suppr超能文献

对预测肿瘤新抗原的天然T细胞反应分析

An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes.

作者信息

Bjerregaard Anne-Mette, Nielsen Morten, Jurtz Vanessa, Barra Carolina M, Hadrup Sine Reker, Szallasi Zoltan, Eklund Aron Charles

机构信息

Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.

Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.

出版信息

Front Immunol. 2017 Nov 15;8:1566. doi: 10.3389/fimmu.2017.01566. eCollection 2017.

Abstract

Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive T-cell therapy may benefit from efficient identification and targeting of patient-specific neoepitopes. However, current neoepitope prediction methods based on sequencing and predictions of epitope processing and presentation result in a low rate of validation, suggesting that the determinants of peptide immunogenicity are not well understood. We gathered published data on human neopeptides originating from single amino acid substitutions for which T cell reactivity had been experimentally tested, including both immunogenic and non-immunogenic neopeptides. Out of 1,948 neopeptide-HLA (human leukocyte antigen) combinations from 13 publications, 53 were reported to elicit a T cell response. From these data, we found an enrichment for responses among peptides of length 9. Even though the peptides had been pre-selected based on presumed likelihood of being immunogenic, we found using NetMHCpan-4.0 that immunogenic neopeptides were predicted to bind significantly more strongly to HLA compared to non-immunogenic peptides. Investigation of the HLA binding strength of the immunogenic peptides revealed that the vast majority (96%) shared very strong predicted binding to HLA and that the binding strength was comparable to that observed for pathogen-derived epitopes. Finally, we found that neopeptide dissimilarity to self is a predictor of immunogenicity in situations where neo- and normal peptides share comparable predicted binding strength. In conclusion, these results suggest new strategies for prioritization of mutated peptides, but new data will be needed to confirm their value.

摘要

癌症免疫疗法(如治疗性疫苗和过继性T细胞疗法)的个性化可能受益于对患者特异性新抗原表位的高效识别和靶向。然而,目前基于测序以及表位加工和呈递预测的新抗原表位预测方法的验证率较低,这表明肽免疫原性的决定因素尚未得到很好的理解。我们收集了已发表的关于源自单氨基酸替换的人类新肽的数据,这些新肽的T细胞反应性已通过实验测试,包括免疫原性和非免疫原性新肽。在来自13篇出版物的1948种新肽 - HLA(人类白细胞抗原)组合中,有53种被报道可引发T细胞反应。从这些数据中,我们发现长度为9的肽中反应有所富集。尽管这些肽是基于假定的免疫原性可能性预先选择的,但我们使用NetMHCpan - 4.0发现,与非免疫原性肽相比,免疫原性新肽被预测与HLA的结合要强得多。对免疫原性肽的HLA结合强度的研究表明,绝大多数(96%)与HLA的预测结合非常强,且结合强度与病原体衍生表位所观察到的相当。最后,我们发现,在新肽和正常肽具有相当的预测结合强度的情况下,新肽与自身的差异是免疫原性的一个预测指标。总之,这些结果为突变肽的优先级排序提出了新策略,但需要新的数据来证实它们的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4502/5694748/d5e79e74aeb7/fimmu-08-01566-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验