Suppr超能文献

预测MHC I类限制性新表位的T细胞识别。

Predicting T cell recognition of MHC class I restricted neoepitopes.

作者信息

Koşaloğlu-Yalçın Zeynep, Lanka Manasa, Frentzen Angela, Logandha Ramamoorthy Premlal Ashmitaa, Sidney John, Vaughan Kerrie, Greenbaum Jason, Robbins Paul, Gartner Jared, Sette Alessandro, Peters Bjoern

机构信息

Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

Surgery Branch, National Cancer Institute, Bethesda, MD, USA.

出版信息

Oncoimmunology. 2018 Aug 27;7(11):e1492508. doi: 10.1080/2162402X.2018.1492508. eCollection 2018.

Abstract

Epitopes that arise from a somatic mutation, also called neoepitopes, are now known to play a key role in cancer immunology and immunotherapy. Recent advances in high-throughput sequencing have made it possible to identify all mutations and thereby all potential neoepitope candidates in an individual cancer. However, most of these neoepitope candidates are not recognized by T cells of cancer patients when tested in vivo or in vitro, meaning they are not immunogenic. Especially in patients with a high mutational load, usually hundreds of potential neoepitopes are detected, highlighting the need to further narrow down this candidate list. In our study, we assembled a dataset of known, naturally processed, immunogenic neoepitopes to dissect the properties that make these neoepitopes immunogenic. The tools to use and thresholds to apply for prioritizing neoepitopes have so far been largely based on experience with epitope identification in other settings such as infectious disease and allergy. Here, we performed a detailed analysis on our dataset of curated immunogenic neoepitopes to establish the appropriate tools and thresholds in the cancer setting. To this end, we evaluated different predictors for parameters that play a role in a neoepitope's immunogenicity and suggest that using binding predictions and length-rescaling yields the best performance in discriminating immunogenic neoepitopes from a background set of mutated peptides. We furthermore show that almost all neoepitopes had strong predicted binding affinities (as expected), but more surprisingly, the corresponding non-mutated peptides had nearly as high affinities. Our results provide a rational basis for parameters in neoepitope filtering approaches that are being commonly used. SNV: single nucleotide variant; nsSNV: nonsynonymous single nucleotide variant; ROC: receiver operating characteristic; AUC: area under ROC curve; HLA: human leukocyte antigen; MHC: major histocompatibility complex; PD-1: Programmed cell death protein 1; PD-L1 or CTLA-4: cytotoxic T-lymphocyte associated protein 4.

摘要

由体细胞突变产生的表位,也称为新表位,目前已知在癌症免疫学和免疫治疗中发挥关键作用。高通量测序的最新进展使得识别个体癌症中的所有突变以及所有潜在的新表位候选物成为可能。然而,在体内或体外测试时,这些新表位候选物中的大多数并未被癌症患者的T细胞识别,这意味着它们没有免疫原性。特别是在具有高突变负荷的患者中,通常会检测到数百个潜在的新表位,这凸显了进一步缩小该候选列表的必要性。在我们的研究中,我们组装了一个已知的、自然加工的、具有免疫原性的新表位数据集,以剖析使这些新表位具有免疫原性的特性。到目前为止,用于优先选择新表位的工具和应用的阈值在很大程度上是基于在其他环境(如传染病和过敏)中进行表位鉴定的经验。在这里,我们对我们精心策划的具有免疫原性的新表位数据集进行了详细分析,以确定癌症环境中的适当工具和阈值。为此,我们评估了在新表位免疫原性中起作用的参数的不同预测因子,并建议使用结合预测和长度重新缩放能够在从一组突变肽背景中区分具有免疫原性的新表位方面产生最佳性能。我们还表明,几乎所有新表位都具有很强的预测结合亲和力(正如预期的那样),但更令人惊讶的是,相应的未突变肽也具有几乎同样高的亲和力。我们的结果为目前常用的新表位筛选方法中的参数提供了合理依据。单核苷酸变异(SNV);非同义单核苷酸变异(nsSNV);受试者工作特征(ROC);ROC曲线下面积(AUC);人类白细胞抗原(HLA);主要组织相容性复合体(MHC);程序性细胞死亡蛋白1(PD-1);细胞毒性T淋巴细胞相关蛋白4(PD-L1或CTLA-4)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc39/6204999/3a8c0c6a9a37/koni-07-11-1492508-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验