CNRS/Univ. Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, UMR5254 , F-64000 Pau, France.
CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UPR 9048 , F-33600 Pessac, France.
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):44222-44230. doi: 10.1021/acsami.7b14826. Epub 2017 Dec 11.
This article deals with the surface reactivity of (001)-oriented LiMnO crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. LiMnO is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO gas molecules on large LiMnO crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.
本文通过结合材料合成、X 射线光电子能谱 (XPS)、扫描电子显微镜、俄歇电子能谱和第一性原理计算的多技术方法,研究了(001)取向的 LiMnO 晶体的表面反应性。LiMnO 被认为是一种合适的模型化合物,可进一步深入了解四价锰原子在层状锂氧化物表面反应性中的作用。了解此类材料的表面特性对于理解导致锂离子电池早期老化或存储性能不佳的寄生现象的机制至关重要。通过 SO 气体分子在大 LiMnO 晶体上的吸附来探测表面反应性,以便能够将 XPS 光束聚焦在(001)表面的顶部。材料在 SO 吸附前后的化学映射和 XPS 表征特别表明,吸附在微观和纳米尺度上是均匀的,涉及 Mn 的还原,而对表面的一个平面模型的第一性原理计算使我们能够得出结论,形成的最具能量优势的物种是带有电荷转移的硫酸盐,这意味着 Mn 的还原。