Shek Roger, Dattmore Devon A, Stives Devin P, Jackson Ashley L, Chatfield Christa H, Hicks Katherine A, French Jarrod B
Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States.
Department of Chemistry, SUNY Cortland , Cortland, New York 13045, United States.
Biochemistry. 2017 Dec 26;56(51):6734-6742. doi: 10.1021/acs.biochem.7b00982. Epub 2017 Dec 14.
Campylobacter jejuni is the most common bacterial cause of gastroenteritis and a major contributor to infant mortality in the developing world. The increasing incidence of antibiotic-resistant C. jejuni only adds to the urgency to develop effective therapies. Because of the essential role that polyamines play, particularly in protection from oxidative stress, enzymes involved in the biosynthesis of these metabolites are emerging as promising antibiotic targets. The recent description of an alternative pathway for polyamine synthesis, distinct from that in human cells, in C. jejuni suggests this pathway could be a target for novel therapies. To that end, we determined X-ray crystal structures of C. jejuni agmatine deiminase (CjADI) and demonstrated that loss of CjADI function contributes to antibiotic sensitivity, likely because of polyamine starvation. The structures provide details of key molecular features of the active site of this protein. Comparison of the unliganded structure (2.1 Å resolution) to that of the CjADI-agmatine complex (2.5 Å) reveals significant structural rearrangements that occur upon substrate binding. The shift of two helical regions of the protein and a large conformational change in a loop near the active site generate a narrow binding pocket around the bound substrate. This change optimally positions the substrate for catalysis. In addition, kinetic analysis of this enzyme demonstrates that CjADI is an iminohydrolase that effectively deiminates agmatine. Our data suggest that C. jejuni agmatine deiminase is a potentially important target for combatting antibiotic resistance, and these results provide a valuable framework for guiding future drug development.
空肠弯曲菌是肠胃炎最常见的细菌病因,也是发展中国家婴儿死亡的主要原因。耐抗生素空肠弯曲菌发病率的不断上升,进一步凸显了开发有效治疗方法的紧迫性。由于多胺发挥着重要作用,特别是在抵御氧化应激方面,参与这些代谢物生物合成的酶正成为有前景的抗生素靶点。最近对空肠弯曲菌中一种不同于人类细胞的多胺合成替代途径的描述表明,该途径可能是新疗法的靶点。为此,我们确定了空肠弯曲菌精氨酸脱亚氨酶(CjADI)的X射线晶体结构,并证明CjADI功能丧失会导致抗生素敏感性增加,这可能是由于多胺饥饿所致。这些结构提供了该蛋白活性位点关键分子特征的细节。将未结合配体的结构(分辨率为2.1 Å)与CjADI-精氨酸复合物的结构(2.5 Å)进行比较,发现底物结合时会发生显著的结构重排。该蛋白的两个螺旋区域的移动以及活性位点附近一个环的大构象变化,在结合的底物周围产生了一个狭窄的结合口袋。这种变化将底物最佳定位以进行催化。此外,对该酶的动力学分析表明,CjADI是一种能有效使精氨酸脱亚氨基的亚氨基水解酶。我们的数据表明,空肠弯曲菌精氨酸脱亚氨酶是对抗抗生素耐药性潜在的重要靶点,这些结果为指导未来药物开发提供了有价值的框架。