The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK.
Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
ISME J. 2018 Feb;12(2):610-622. doi: 10.1038/ismej.2017.196. Epub 2017 Dec 1.
The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.
该饮食提供在上消化道不可消化的碳水化合物,是下消化道微生物群落的主要碳源和能量来源,支持复杂的代谢网络。发酵产生短链脂肪酸(SCFA),如乙酸盐、丙酸盐和丁酸盐,这些酸对人体宿主具有促进健康的作用。在这里,我们研究了 15 种不同不可消化碳水化合物在体外批量培养过程中微生物群落的变化和 SCFA 的产生,使用了来自 3 个不同人类供体的粪便微生物群,初始 pH 值为 2 个。为了研究时间稳定性和重现性,我们在 1 年后用其中的 4 种碳水化合物进行了进一步的实验。较低的 pH 值(5.5)导致丁酸产量更高,而较高的 pH 值(6.5)导致丙酸产量更高。发现鼠李糖具有最强的丙酸生成作用,其次是半乳甘露聚糖,而果聚糖和几种α-和β-葡聚糖则导致丁酸产量更高。基于 16S 核糖体 RNA 基因的定量 PCR 分析了 22 种不同的微生物群,以及 454 测序,发现特定细菌对特定碳水化合物的反应存在显著刺激。一些变化归因于代谢物交叉喂养,例如,Eubacterium hallii 利用 Blautia spp.发酵鼠李糖产生的 1,2-丙二醇。尽管微生物群落组成存在明显的个体间差异,但不同碳水化合物的 SCFA 产生惊人地具有重现性,表明存在一定程度的功能冗余。有趣的是,丁酸的形成不仅受到群落中总体丁酸产生菌的影响,还受到初始 pH 值的影响,这与丁酸生产的化学计量比随 pH 值变化的情况一致。