Suppr超能文献

单孔喉道中粘弹性流体流动的弹性湍流特征

Signature of elastic turbulence of viscoelastic fluid flow in a single pore throat.

作者信息

Ekanem Eseosa M, Berg Steffen, De Shauvik, Fadili Ali, Bultreys Tom, Rücker Maja, Southwick Jeffrey, Crawshaw John, Luckham Paul F

机构信息

Department of Chemical Engineering, Imperial College London SW7 2AZ, United Kingdom.

Department of Earth Science and Engineering, Imperial College London SW7 2AZ, United Kingdom.

出版信息

Phys Rev E. 2020 Apr;101(4-1):042605. doi: 10.1103/PhysRevE.101.042605.

Abstract

When a viscoelastic fluid, such as an aqueous polymer solution, flows through a porous medium, the fluid undergoes a repetitive expansion and contraction as it passes from one pore to the next. Above a critical flow rate, the interaction between the viscoelastic nature of the polymer and the pore configuration results in spatial and temporal flow instabilities reminiscent of turbulentlike behavior, even though the Reynolds number Re≪1. To investigate whether this is caused by many repeated pore body-pore throat sequences, or simply a consequence of the converging (diverging) nature present in a single pore throat, we performed experiments using anionic hydrolyzed polyacrylamide (HPAM) in a microfluidic flow geometry representing a single pore throat. This allows the viscoelastic fluid to be characterized at increasing flow rates using microparticle image velocimetry in combination with pressure drop measurements. The key finding is that the effect, popularly known as "elastic turbulence," occurs already in a single pore throat geometry. The critical Deborah number at which the transition in rheological flow behavior from pseudoplastic (shear thinning) to dilatant (shear thickening) strongly depends on the ionic strength, the type of cation in the anionic HPAM solution, and the nature of pore configuration. The transition towards the elastic turbulence regime was found to directly correlate with an increase in normal stresses. The topology parameter, Q_{f}, computed from the velocity distribution, suggests that the "shear thickening" regime, where much of the elastic turbulence occurs in a single pore throat, is a consequence of viscoelastic normal stresses that cause a complex flow field. This flow field consists of extensional, shear, and rotational features around the constriction, as well as upstream and downstream of the constriction. Furthermore, this elastic turbulence regime, has high-pressure fluctuations, with a power-law decay exponent of up to |-2.1| which is higher than the Kolmogorov value for turbulence of |-5/3|.

摘要

当粘弹性流体(如水基聚合物溶液)流经多孔介质时,流体在从一个孔隙流向另一个孔隙的过程中会经历反复的膨胀和收缩。在高于临界流速时,聚合物的粘弹性与孔隙结构之间的相互作用会导致空间和时间上的流动不稳定性,这种不稳定性让人联想到湍流行为,尽管雷诺数Re≪1。为了研究这是由许多重复的孔体 - 孔喉序列引起的,还是仅仅是单个孔喉中存在的收敛(发散)性质的结果,我们使用阴离子水解聚丙烯酰胺(HPAM)在代表单个孔喉的微流控流动几何结构中进行了实验。这使得可以通过结合压力降测量的微粒图像测速技术在不断增加的流速下对粘弹性流体进行表征。关键发现是,这种通常被称为“弹性湍流”的效应已经在单个孔喉几何结构中出现。流变流动行为从假塑性(剪切变稀)转变为膨胀性(剪切增稠)时的临界德博拉数强烈依赖于离子强度、阴离子HPAM溶液中阳离子的类型以及孔隙结构的性质。发现向弹性湍流区域的转变与法向应力的增加直接相关。根据速度分布计算出的拓扑参数Q_f表明,“剪切增稠”区域(其中大部分弹性湍流发生在单个孔喉中)是由导致复杂流场的粘弹性法向应力引起 的。这个流场由收缩处周围以及收缩处上游和下游的拉伸、剪切和旋转特征组成。此外,这种弹性湍流区域具有高压波动,幂律衰减指数高达|-2.1|,高于湍流的科尔莫戈罗夫值|-5/3|。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验