Oscanoa Julio A, Middione Matthew J, Alkan Cagan, Yurt Mahmut, Loecher Michael, Vasanawala Shreyas S, Ennis Daniel B
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Department of Radiology, Stanford University, Stanford, CA 94305, USA.
Bioengineering (Basel). 2023 Mar 6;10(3):334. doi: 10.3390/bioengineering10030334.
Cardiac magnetic resonance (CMR) is an essential clinical tool for the assessment of cardiovascular disease. Deep learning (DL) has recently revolutionized the field through image reconstruction techniques that allow unprecedented data undersampling rates. These fast acquisitions have the potential to considerably impact the diagnosis and treatment of cardiovascular disease. Herein, we provide a comprehensive review of DL-based reconstruction methods for CMR. We place special emphasis on state-of-the-art unrolled networks, which are heavily based on a conventional image reconstruction framework. We review the main DL-based methods and connect them to the relevant conventional reconstruction theory. Next, we review several methods developed to tackle specific challenges that arise from the characteristics of CMR data. Then, we focus on DL-based methods developed for specific CMR applications, including flow imaging, late gadolinium enhancement, and quantitative tissue characterization. Finally, we discuss the pitfalls and future outlook of DL-based reconstructions in CMR, focusing on the robustness, interpretability, clinical deployment, and potential for new methods.
心脏磁共振成像(CMR)是评估心血管疾病的重要临床工具。深度学习(DL)最近通过图像重建技术革新了该领域,这些技术允许前所未有的数据欠采样率。这些快速采集可能会对心血管疾病的诊断和治疗产生重大影响。在此,我们对基于深度学习的CMR重建方法进行全面综述。我们特别强调基于传统图像重建框架的最新展开式网络。我们回顾主要的基于深度学习的方法,并将它们与相关的传统重建理论联系起来。接下来,我们回顾为应对CMR数据特征所产生的特定挑战而开发的几种方法。然后,我们关注为特定CMR应用(包括血流成像、延迟钆增强和定量组织表征)开发的基于深度学习的方法。最后,我们讨论基于深度学习的CMR重建的陷阱和未来展望,重点关注稳健性、可解释性、临床应用以及新方法的潜力。