Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Chem Asian J. 2018 Jan 18;13(2):127-142. doi: 10.1002/asia.201701596. Epub 2018 Jan 2.
The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given.
光电化学(PEC)二氧化碳还原过程是将太阳能转化为化学原料的一种很有前途的方法,与各种可用的二氧化碳减排方法相比,它具有优势。由廉价且丰富的元素衍生而来的半导体是催化的理想候选材料。无论是作为本征半导体还是与金属助催化剂、生物催化剂和金属分子配合物混合使用,半导体光阴极在二氧化碳还原过程中都表现出良好的性能和低过电势。除了关注二氧化碳还原材料和化学之外,使用光电混合电极或太阳能电池的独立器件的 PEC 电池也是近期研究的热门话题。本文综述了 PEC 二氧化碳还原的最新进展,并深入了解了二氧化碳还原催化剂。