Niina Toru, Brandani Giovanni B, Tan Cheng, Takada Shoji
Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
PLoS Comput Biol. 2017 Dec 1;13(12):e1005880. doi: 10.1371/journal.pcbi.1005880. eCollection 2017 Dec.
While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements.
虽然真核基因组上的核小体定位在基因调控中发挥着重要作用,但核小体沿DNA定位和滑动的分子机制尚未得到很好的理解。在这里,我们通过开发和应用一种粗粒度分子模拟方法来研究热激活的自发核小体滑动机制,该方法结合了组蛋白八聚体与DNA之间的长程静电和短程氢键相互作用。模拟结果揭示了两种不同的滑动模式,这取决于核小体DNA序列。均匀的DNA序列显示出频繁的滑动,以旋转耦合的方式每次滑动一个碱基对,类似于螺旋状运动。相反,一个强定位序列,即所谓的601序列,表现出罕见的、突然的五个和十个碱基对的跳跃,且无旋转。此外,我们评估了氢键相互作用对滑动模式的重要性,发现强键和弱键分别有利于旋转耦合和非耦合滑动运动。