Garcia Tanya P, Ma Yanyuan
Department of Epidemiology and Biostatistics, Texas A&M University.
Department of Statistics, Pennsylvania State University.
J Econom. 2017 Oct;200(2):194-206. doi: 10.1016/j.jeconom.2017.06.005. Epub 2017 Jul 8.
We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.
我们针对具有测量误差协变量的一般回归模型开发了参数的一致且有效的估计方法。我们假设模型误差和协变量分布未明确指定,并且测量误差分布是具有未知方差 - 协方差的一般参数分布。我们使用半参数有效得分构建根一致、渐近正态且局部有效的估计量。我们不估计任何未知分布或模型误差异方差性。相反,我们在可能不正确的模型误差、易出错协变量或两者的工作分布模型下形成估计量。实证结果表明,在具有易出错协变量的同方差和异方差模型中,对不同的不正确工作模型具有稳健性。