Suppr超能文献

受限矩模型中未指定的异方差模型误差分布与测量误差协变量的同时处理

Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models.

作者信息

Garcia Tanya P, Ma Yanyuan

机构信息

Department of Epidemiology and Biostatistics, Texas A&M University.

Department of Statistics, Pennsylvania State University.

出版信息

J Econom. 2017 Oct;200(2):194-206. doi: 10.1016/j.jeconom.2017.06.005. Epub 2017 Jul 8.

Abstract

We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.

摘要

我们针对具有测量误差协变量的一般回归模型开发了参数的一致且有效的估计方法。我们假设模型误差和协变量分布未明确指定,并且测量误差分布是具有未知方差 - 协方差的一般参数分布。我们使用半参数有效得分构建根一致、渐近正态且局部有效的估计量。我们不估计任何未知分布或模型误差异方差性。相反,我们在可能不正确的模型误差、易出错协变量或两者的工作分布模型下形成估计量。实证结果表明,在具有易出错协变量的同方差和异方差模型中,对不同的不正确工作模型具有稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d4/5708600/2c99e0e5941d/nihms891467f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验