Huang Alan, Rathouz Paul J
University of Technology Sydney and University of Wisconsin-Madison.
Commun Stat Theory Methods. 2017;46(7):3290-3296. doi: 10.1080/03610926.2013.851241. Epub 2016 Nov 17.
We show that the mean-model parameter is always orthogonal to the error distribution in generalized linear models. Thus, the maximum likelihood estimator of the mean-model parameter will be asymptotically efficient regardless of whether the error distribution is known completely, known up to a finite vector of parameters, or left completely unspecified, in which case the likelihood is taken to be an appropriate semiparametric likelihood. Moreover, the maximum likelihood estimator of the mean-model parameter will be asymptotically independent of the maximum likelihood estimator of the error distribution. This generalizes some well-known results for the special cases of normal, gamma and multinomial regression models, and, perhaps more interestingly, suggests that asymptotically efficient estimation and inferences can always be obtained if the error distribution is nonparametrically estimated along with the mean. In contrast, estimation and inferences using misspecified error distributions or variance functions are generally not efficient.
我们证明,在广义线性模型中,均值模型参数始终与误差分布正交。因此,无论误差分布是完全已知、已知到有限参数向量,还是完全未指定(在后一种情况下,似然被视为适当的半参数似然),均值模型参数的最大似然估计量都将是渐近有效的。此外,均值模型参数的最大似然估计量将渐近独立于误差分布的最大似然估计量。这推广了正态、伽马和多项回归模型特殊情况的一些著名结果,也许更有趣的是,这表明如果误差分布与均值一起进行非参数估计,总能获得渐近有效的估计和推断。相比之下,使用错误指定的误差分布或方差函数进行估计和推断通常效率不高。