Ironside Kirsten E, Mattson David J, Theimer Tad, Jansen Brian, Holton Brandon, Arundel Terence, Peters Michael, Sexton Joseph O, Edwards Thomas C
U.S. Geological Survey, Southwest Biological Science Center, 2255 N. Gemini Dr, Flagstaff, AZ 86001 USA.
Biological Sciences Department, Northern Arizona University, Flagstaff, AZ 86011 USA.
Mov Ecol. 2017 Nov 23;5:24. doi: 10.1186/s40462-017-0115-z. eCollection 2017.
Many studies of animal movement have focused on directed versus area-restricted movement, which rely on correlations between step-length and turn-angles and on stationarity through time to define behavioral states. Although these approaches might apply well to grazing in patchy landscapes, species that either feed for short periods on large, concentrated food sources or cache food exhibit movements that are difficult to model using the traditional metrics of turn-angle and step-length alone.
We used GPS telemetry collected from a prey-caching predator, the cougar (), to test whether combining metrics of site recursion, spatiotemporal clustering, speed, and turning into an index of movement using partial sums, improves the ability to identify caching behavior. The index was used to identify changes in movement characteristics over time and segment paths into behavioral classes. The identification of behaviors from the Path Identification Index (PII) was evaluated using field investigations of cougar activities at GPS locations. We tested for statistical stationarity across behaviors for use of topographic view-sheds. Changes in the frequency and duration of PII were useful for identifying seasonal activities such as migration, gestation, and denning. The comparison of field investigations of cougar activities to behavioral PII classes resulted in an overall classification accuracy of 81%.
Changes in behaviors were reflected in cougars' use of topographic view-sheds, resulting in statistical nonstationarity over time, and revealed important aspects of hunting behavior. Incorporating metrics of site recursion and spatiotemporal clustering revealed the temporal structure in movements of a caching forager. The movement index PII, shows promise for identifying behaviors in species that frequently return to specific locations such as food caches, watering holes, or dens, and highlights the potential role memory and cognitive abilities play in determining animal movements.
许多关于动物运动的研究都集中在定向运动与区域限制运动上,这些研究依赖步长与转向角之间的相关性以及随时间的平稳性来定义行为状态。尽管这些方法可能很好地适用于在斑块状景观中的觅食行为,但那些在大型集中食物源上短时间觅食或储存食物的物种所表现出的运动,仅使用传统的转向角和步长指标很难进行建模。
我们使用从一种储存猎物的捕食者美洲狮()收集的GPS遥测数据,来测试将地点递归、时空聚类、速度和转向等指标通过部分和合并为一个运动指数,是否能提高识别储存行为的能力。该指数用于识别运动特征随时间的变化,并将路径划分为行为类别。通过对GPS定位点处美洲狮活动的实地调查,评估了从路径识别指数(PII)中识别行为的情况。我们测试了不同行为在使用地形视域方面的统计平稳性。PII频率和持续时间的变化对于识别季节性活动(如迁徙、妊娠和筑巢)很有用。将美洲狮活动的实地调查与行为PII类别进行比较,总体分类准确率为81%。
行为变化反映在美洲狮对地形视域的使用上,导致随时间出现统计非平稳性,并揭示了狩猎行为的重要方面。纳入地点递归和时空聚类指标揭示了储存性觅食者运动中的时间结构。运动指数PII在识别频繁返回特定地点(如食物储存点、水坑或巢穴)的物种的行为方面显示出前景,并突出了记忆和认知能力在决定动物运动中所起的潜在作用。