Suppr超能文献

一种用于分析RNA茎环结构和蛋白质二硫键拓扑结构的纽结多项式不变量。

A Knot Polynomial Invariant for Analysis of Topology of RNA Stems and Protein Disulfide Bonds.

作者信息

Tian Wei, Lei Xue, Kauffman Louis H, Liang Jie

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60606, USA.

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60606, USA.

出版信息

Mol Based Math Biol. 2017 Jan;5(1):21-30. doi: 10.1515/mlbmb-2017-0002.

Abstract

Knot polynomials have been used to detect and classify knots in biomolecules. Computation of knot polynomials in DNA and protein molecules have revealed the existence of knotted structures, and provided important insight into their topological structures. However, conventional knot polynomials are not well suited to study RNA molecules, as RNA structures are determined by stem regions which are not taken into account in conventional knot polynomials. In this study, we develop a new class of knot polynomials specifically designed to study RNA molecules, which considers stem regions. We demonstrate that our knot polynomials have direct structural relation with RNA molecules, and can be used to classify the topology of RNA secondary structures. Furthermore, we point out that these knot polynomials can be used to model the topological effects of disulfide bonds in protein molecules.

摘要

纽结多项式已被用于检测和分类生物分子中的纽结。DNA和蛋白质分子中纽结多项式的计算揭示了纽结结构的存在,并为其拓扑结构提供了重要的见解。然而,传统的纽结多项式不太适合研究RNA分子,因为RNA结构是由茎区决定的,而传统纽结多项式并未考虑茎区。在本研究中,我们开发了一类专门设计用于研究RNA分子的新型纽结多项式,该多项式考虑了茎区。我们证明了我们的纽结多项式与RNA分子具有直接的结构关系,并且可用于对RNA二级结构的拓扑进行分类。此外,我们指出这些纽结多项式可用于模拟蛋白质分子中二硫键的拓扑效应。

相似文献

2
Geometric learning of knot topology.纽结拓扑的几何学习
Soft Matter. 2023 Dec 20;20(1):71-78. doi: 10.1039/d3sm01199b.
3
Knot polynomials of open and closed curves.开放曲线和封闭曲线的纽结多项式。
Proc Math Phys Eng Sci. 2020 Aug;476(2240):20200124. doi: 10.1098/rspa.2020.0124. Epub 2020 Aug 5.
4
To knot or not to knot? Examination of 16S ribosomal RNA models.打结还是不打结?16S核糖体RNA模型研究
J Biomol Struct Dyn. 1998 Dec;16(3):709-13. doi: 10.1080/07391102.1998.10508282.
5
Program for analyzing knots represented by polygonal paths.用于分析由多边形路径表示的结的程序。
J Comput Chem. 1999 Jun;20(8):813-818. doi: 10.1002/(SICI)1096-987X(199906)20:8<813::AID-JCC7>3.0.CO;2-I.
7
Topological descriptions of protein folding.蛋白质折叠的拓扑描述。
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9360-9369. doi: 10.1073/pnas.1808312116. Epub 2019 Apr 18.
8
Knot theory realizations in nematic colloids.向列型胶体中的纽结理论实现
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1675-80. doi: 10.1073/pnas.1417178112. Epub 2015 Jan 26.
10
Absence of knots in known RNA structures.已知RNA结构中不存在纽结。
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2052-7. doi: 10.1073/pnas.1418445112. Epub 2015 Feb 2.

本文引用的文献

1
Absence of knots in known RNA structures.已知RNA结构中不存在纽结。
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2052-7. doi: 10.1073/pnas.1418445112. Epub 2015 Feb 2.
2
Knot theory in understanding proteins.用于理解蛋白质的纽结理论。
J Math Biol. 2012 Dec;65(6-7):1187-213. doi: 10.1007/s00285-011-0488-3. Epub 2011 Nov 22.
3
A Stevedore's protein knot.装卸工的蛋白结。
PLoS Comput Biol. 2010 Apr 1;6(4):e1000731. doi: 10.1371/journal.pcbi.1000731.
4
Intricate knots in proteins: Function and evolution.蛋白质中的复杂结构:功能与进化
PLoS Comput Biol. 2006 Sep 15;2(9):e122. doi: 10.1371/journal.pcbi.0020122. Epub 2006 Jul 28.
5
Statistics of knots, geometry of conformations, and evolution of proteins.结的统计学、构象几何学与蛋白质进化
PLoS Comput Biol. 2006 May;2(5):e45. doi: 10.1371/journal.pcbi.0020045. Epub 2006 May 19.
6
Functional analysis of the pseudoknot structure in human telomerase RNA.人端粒酶RNA中假结结构的功能分析
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8080-5; discussion 8077-9. doi: 10.1073/pnas.0502259102. Epub 2005 Apr 22.
10
A new principle of RNA folding based on pseudoknotting.基于假结形成的RNA折叠新原理。
Nucleic Acids Res. 1985 Mar 11;13(5):1717-31. doi: 10.1093/nar/13.5.1717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验