Suppr超能文献

参数选择对长时间步行试验熵计算的影响。

Effect of parameter selection on entropy calculation for long walking trials.

作者信息

Yentes Jennifer M, Denton William, McCamley John, Raffalt Peter C, Schmid Kendra K

机构信息

Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA.

Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA.

出版信息

Gait Posture. 2018 Feb;60:128-134. doi: 10.1016/j.gaitpost.2017.11.023. Epub 2017 Nov 28.

Abstract

It is sometimes difficult to obtain uninterrupted data sets that are long enough to perform nonlinear analysis, especially in pathological populations. It is currently unclear as to how many data points are needed for reliable entropy analysis. The aims of this study were to determine the effect of changing parameter values of m, r, and N on entropy calculations for long gait data sets using two different modes of walking (i.e., overground versus treadmill). Fourteen young adults walked overground and on a treadmill at their preferred walking speed for one-hour while step time was collected via heel switches. Approximate (ApEn) and sample entropy (SampEn) were calculated using multiple parameter combinations of m, N, and r. Further, r was tested under two cases rstandard deviation and r constant. ApEn differed depending on the combination of r, m, and N. ApEn demonstrated relative consistency except when m=2 and the smallest r values used (rSD=0.015SD, 0.20*SD; rConstant=0 and 0.003). For SampEn, as r increased, SampEn decreased. When r was constant, SampEn demonstrated excellent relative consistency for all combinations of r, m, and N. When r constant was used, overground walking was more regular than treadmill. However, treadmill walking was found to be more regular when using rSD for both ApEn and SampEn. For greatest relative consistency of step time data, it was best to use a constant r value and SampEn. When using entropy, several r values must be examined and reported to ensure that results are not an artifact of parameter choice.

摘要

有时很难获得足够长的不间断数据集来进行非线性分析,尤其是在病理人群中。目前尚不清楚可靠的熵分析需要多少数据点。本研究的目的是使用两种不同的行走模式(即地面行走与跑步机行走),确定改变m、r和N的参数值对长步态数据集熵计算的影响。14名年轻成年人以他们喜欢的步行速度在地面和跑步机上行走1小时,同时通过脚跟开关收集步长数据。使用m、N和r的多个参数组合计算近似熵(ApEn)和样本熵(SampEn)。此外,在r标准差和r恒定两种情况下对r进行了测试。ApEn因r、m和N的组合而异。除了m = 2且使用最小r值(rSD = 0.015标准差,0.20*标准差;rConstant = 0和0.003)时,ApEn表现出相对一致性。对于SampEn,随着r的增加,SampEn降低。当r恒定时,SampEn在r、m和N的所有组合中表现出极好的相对一致性。当使用r恒定时,地面行走比跑步机行走更规律。然而,在ApEn和SampEn中使用rSD时,发现跑步机行走更规律。为了使步长数据具有最大的相对一致性,最好使用恒定的r值和SampEn。在使用熵时,必须检查并报告几个r值,以确保结果不是参数选择的人为产物。

相似文献

1
Effect of parameter selection on entropy calculation for long walking trials.
Gait Posture. 2018 Feb;60:128-134. doi: 10.1016/j.gaitpost.2017.11.023. Epub 2017 Nov 28.
2
On the use of approximate entropy and sample entropy with centre of pressure time-series.
J Neuroeng Rehabil. 2018 Dec 12;15(1):116. doi: 10.1186/s12984-018-0465-9.
3
The appropriate use of approximate entropy and sample entropy with short data sets.
Ann Biomed Eng. 2013 Feb;41(2):349-65. doi: 10.1007/s10439-012-0668-3. Epub 2012 Oct 12.
6
Understanding ageing effects using complexity analysis of foot-ground clearance during walking.
Comput Methods Biomech Biomed Engin. 2013;16(5):554-64. doi: 10.1080/10255842.2011.628943. Epub 2012 Jan 30.
7
The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults.
Eur J Appl Physiol. 2017 Sep;117(9):1833-1843. doi: 10.1007/s00421-017-3672-3. Epub 2017 Jul 7.
8
Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.
Clin Biomech (Bristol). 2016 Aug;37:91-97. doi: 10.1016/j.clinbiomech.2016.06.007. Epub 2016 Jun 28.
9
A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions.
Gait Posture. 2016 Jan;43:204-9. doi: 10.1016/j.gaitpost.2015.09.024. Epub 2015 Oct 23.
10
Gait variability, fractal dynamics, and statistical regularity of treadmill and overground walking recorded with a smartphone.
Gait Posture. 2024 Jun;111:53-58. doi: 10.1016/j.gaitpost.2024.04.002. Epub 2024 Apr 17.

引用本文的文献

1
Signals of complexity and fragmentation in accelerometer data.
PLoS One. 2025 Jul 9;20(7):e0326522. doi: 10.1371/journal.pone.0326522. eCollection 2025.
3
Individuals With Multiple Sclerosis Exhibit More Regular Center of Mass Accelerations After Physical Therapy.
Arch Rehabil Res Clin Transl. 2024 Jan 5;6(1):100318. doi: 10.1016/j.arrct.2024.100318. eCollection 2024 Mar.
4
Cognitive Loading Produces Similar Change in Postural Stability in Patients With Chronic Ankle Instability and Controls.
Athl Train Sports Health Care. 2020 Nov;12(6):249-256. doi: 10.3928/19425864-20200610-02. Epub 2020 Jun 10.
5
Visual feedback influences the consistency of the locomotor pattern in Asian elephants ().
Biol Lett. 2023 Sep;19(9):20230260. doi: 10.1098/rsbl.2023.0260. Epub 2023 Sep 27.
7
Calculating sample entropy from isometric torque signals: methodological considerations and recommendations.
Front Physiol. 2023 Jun 1;14:1173702. doi: 10.3389/fphys.2023.1173702. eCollection 2023.
8
The Fidget Factor and the obesity paradox. How small movements have big impact.
Front Sports Act Living. 2023 Apr 3;5:1122938. doi: 10.3389/fspor.2023.1122938. eCollection 2023.
10
Gait analysis under the lens of statistical physics.
Comput Struct Biotechnol J. 2022 Jun 18;20:3257-3267. doi: 10.1016/j.csbj.2022.06.022. eCollection 2022.

本文引用的文献

1
Multiscale entropy analysis of human gait dynamics.
Physica A. 2003 Dec 1;330(1-2):53-60. doi: 10.1016/j.physa.2003.08.022. Epub 2003 Sep 21.
2
Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking.
Med Eng Phys. 2015 Oct;37(10):929-36. doi: 10.1016/j.medengphy.2015.06.010. Epub 2015 Aug 4.
3
Effect of treadmill versus overground running on the structure of variability of stride timing.
Percept Mot Skills. 2014 Apr;118(2):331-46. doi: 10.2466/30.26.PMS.118k18w8.
5
The appropriate use of approximate entropy and sample entropy with short data sets.
Ann Biomed Eng. 2013 Feb;41(2):349-65. doi: 10.1007/s10439-012-0668-3. Epub 2012 Oct 12.
7
Comparison of pelvic complex kinematics during treadmill and overground walking.
Arch Phys Med Rehabil. 2012 Dec;93(12):2302-8. doi: 10.1016/j.apmr.2011.10.022. Epub 2012 Feb 24.
8
Comparison of the metabolic energy cost of overground and treadmill walking in older adults.
Eur J Appl Physiol. 2012 May;112(5):1613-20. doi: 10.1007/s00421-011-2102-1. Epub 2011 Aug 24.
9
Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking.
Clin Biomech (Bristol). 2011 Nov;26(9):962-8. doi: 10.1016/j.clinbiomech.2011.05.013. Epub 2011 Jun 29.
10
Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking.
J Neuroeng Rehabil. 2011 Feb 24;8:12. doi: 10.1186/1743-0003-8-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验