Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Korea.
School of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea.
Molecules. 2019 Apr 10;24(7):1409. doi: 10.3390/molecules24071409.
Recent research in DNA nanotechnology has demonstrated that biological substrates can be used for computing at a molecular level. However, in vitro demonstrations of DNA computations use preprogrammed, rule-based methods which lack the adaptability that may be essential in developing molecular systems that function in dynamic environments. Here, we introduce an in vitro molecular algorithm that 'learns' molecular models from training data, opening the possibility of 'machine learning' in wet molecular systems. Our algorithm enables enzymatic weight update by targeting internal loop structures in DNA and ensemble learning, based on the hypernetwork model. This novel approach allows massively parallel processing of DNA with enzymes for specific structural selection for learning in an iterative manner. We also introduce an intuitive method of DNA data construction to dramatically reduce the number of unique DNA sequences needed to cover the large search space of feature sets. By combining molecular computing and machine learning the proposed algorithm makes a step closer to developing molecular computing technologies for future access to more intelligent molecular systems.
最近的 DNA 纳米技术研究表明,生物基质可用于在分子水平上进行计算。然而,体外 DNA 计算的演示使用了预先编程的、基于规则的方法,这些方法缺乏在开发在动态环境中运行的分子系统时可能至关重要的适应性。在这里,我们引入了一种体外分子算法,该算法可以从训练数据中“学习”分子模型,为湿分子系统中的“机器学习”开辟了可能性。我们的算法通过针对 DNA 中的内部环结构和基于超网络模型的集合学习来实现酶促权重更新。这种新颖的方法允许使用酶以特定的结构进行大规模并行处理,以便以迭代的方式进行学习的特异性选择。我们还引入了一种直观的 DNA 数据构建方法,可以大大减少覆盖特征集大搜索空间所需的独特 DNA 序列的数量。通过将分子计算和机器学习相结合,所提出的算法在开发未来更智能的分子计算技术方面迈出了一步。