Suppr超能文献

不可逆性慢性病的动态监测与控制及其在青光眼方面的应用

Dynamic Monitoring and Control of Irreversible Chronic Diseases with Application to Glaucoma.

作者信息

Kazemian Pooyan, Helm Jonathan E, Lavieri Mariel S, Stein Joshua D, Van Oyen Mark P

机构信息

Medical Practice Evaluation Center, Division of General Internal Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114.

Operations and Decision Technologies, Kelley School of Business, Indiana University, 1309 E 10th St, Bloomington, IN 47405.

出版信息

Prod Oper Manag. 2019 May;28(5):1082-1107. doi: 10.1111/poms.12975. Epub 2018 Nov 16.

Abstract

To manage chronic disease patients effectively, clinicians must know (1) how to monitor each patient (i.e., when to schedule the next visit and which tests to take), and (2) how to control the disease (i.e., what levels of controllable risk factors will sufficiently slow progression). Our research addresses these questions simultaneously and provides the optimal solution to a novel linear quadratic Gaussian state space model. For the objective of minimizing the relative change in state over time (i.e., disease progression), which is necessary for managing irreversible chronic diseases while also considering the cost of tests and treatment, we show that the classical two-way separation of estimation and control holds. This makes a previously intractable problem solvable by decomposition into two separate, tractable problems while maintaining optimality. The resulting optimization is applied to the management of glaucoma. Based on data from two large randomized clinical trials, we validate our model and demonstrate how our decision support tool can provide actionable insights to the clinician caring for a patient with glaucoma. This methodology can be applied to a broad range of irreversible chronic diseases to devise patient-specific monitoring and treatment plans optimally.

摘要

为了有效管理慢性病患者,临床医生必须知道:(1)如何监测每位患者(即何时安排下一次就诊以及进行哪些检查),以及(2)如何控制疾病(即可控风险因素达到何种水平将足以减缓病情进展)。我们的研究同时解决了这些问题,并为一个新颖的线性二次高斯状态空间模型提供了最优解。对于在管理不可逆慢性病的同时还要考虑检查和治疗成本的情况下,将随时间推移的状态相对变化(即疾病进展)最小化这一目标,我们证明了估计与控制的经典双向分离是成立的。这使得一个以前难以处理的问题可以通过分解为两个单独的、易于处理的问题来解决,同时保持最优性。由此产生的优化方法应用于青光眼的管理。基于两项大型随机临床试验的数据,我们验证了我们的模型,并展示了我们的决策支持工具如何为照顾青光眼患者的临床医生提供可操作的见解。这种方法可以应用于广泛的不可逆慢性病,以最优地制定针对患者的监测和治疗计划。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

8
Analyzing Screening Policies for Childhood Obesity.分析儿童肥胖筛查政策。
Manage Sci. 2013 Apr 1;59(4):782-795. doi: 10.1287/mnsc.1120.1587.
9
State-space size considerations for disease-progression models.状态空间大小对疾病进展模型的考虑。
Stat Med. 2013 Sep 30;32(22):3862-80. doi: 10.1002/sim.5808. Epub 2013 Apr 23.
10
Rates of visual field progression in clinical glaucoma care.临床青光眼治疗中的视野进展率。
Acta Ophthalmol. 2013 Aug;91(5):406-12. doi: 10.1111/j.1755-3768.2012.02492.x. Epub 2012 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验