Suppr超能文献

直接施密特-莱曼变换和秩亏载荷矩阵。

Direct Schmid-Leiman Transformations and Rank-Deficient Loadings Matrices.

机构信息

Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN, 55455, USA.

出版信息

Psychometrika. 2018 Dec;83(4):858-870. doi: 10.1007/s11336-017-9599-0. Epub 2017 Dec 4.

Abstract

The Schmid-Leiman (S-L; Psychometrika 22: 53-61, 1957) transformation is a popular method for conducting exploratory bifactor analysis that has been used in hundreds of studies of individual differences variables. To perform a two-level S-L transformation, it is generally believed that two separate factor analyses are required: a first-level analysis in which k obliquely rotated factors are extracted from an observed-variable correlation matrix, and a second-level analysis in which a general factor is extracted from the correlations of the first-level factors. In this article, I demonstrate that the S-L loadings matrix is necessarily rank deficient. I then show how this feature of the S-L transformation can be used to obtain a direct S-L solution from an unrotated first-level factor structure. Next, I reanalyze two examples from Mansolf and Reise (Multivar Behav Res 51: 698-717, 2016) to illustrate the utility of 'best-fitting' S-L rotations when gauging the ability of hierarchical factor models to recover known bifactor structures. Finally, I show how to compute direct bifactor solutions for non-hierarchical bifactor structures. An online supplement includes R code to reproduce all of the analyses that are reported in the article.

摘要

施密特-莱曼(S-L;心理测量学 22:53-61,1957)转换是一种流行的探索性双因素分析方法,已在数百项个体差异变量研究中使用。要进行两级 S-L 转换,通常需要进行两次单独的因子分析:第一次是从观察变量相关矩阵中提取 k 个斜交旋转因子的分析,第二次是从第一次级别的因子相关性中提取总因子的分析。在本文中,我证明了 S-L 加载矩阵必然是秩亏的。然后,我展示了如何利用 S-L 变换的这一特征,从未旋转的一级因子结构中直接获得 S-L 解。接下来,我重新分析了 Mansolf 和 Reise(多变量行为研究 51:698-717,2016)的两个例子,说明了在评估层次因子模型恢复已知双因素结构的能力时,“最佳拟合”S-L 旋转的效用。最后,我展示了如何为非层次双因素结构计算直接双因素解。在线补充包括 R 代码,可重现本文报告的所有分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验