Giunchiglia Valentina, Gruia Dragos-Cristian, Lerede Annalaura, Trender William, Hellyer Peter, Hampshire Adam
Department of Brain Sciences, Imperial College London, London, UK.
Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
NPJ Digit Med. 2024 Nov 19;7(1):328. doi: 10.1038/s41746-024-01327-x.
Online cognitive tasks are gaining traction as scalable and cost-effective alternatives to traditional supervised assessments. However, variability in peoples' home devices, visual and motor abilities, and speed-accuracy biases confound the specificity with which online tasks can measure cognitive abilities. To address these limitations, we developed IDoCT (Iterative Decomposition of Cognitive Tasks), a method for estimating domain-specific cognitive abilities and trial-difficulty scales from task performance timecourses in a data-driven manner while accounting for device and visuomotor latencies, unspecific cognitive processes and speed-accuracy trade-offs. IDoCT can operate with any computerised task where cognitive difficulty varies across trials. Using data from 388,757 adults, we show that IDoCT successfully dissociates cognitive abilities from these confounding factors. The resultant cognitive scores exhibit stronger dissociation of psychometric factors, improved cross-participants distributions, and meaningful demographic's associations. We propose that IDoCT can enhance the precision of online cognitive assessments, especially in large scale clinical and research applications.
在线认知任务作为传统监督评估的可扩展且经济高效的替代方案,正越来越受到关注。然而,人们家庭设备的差异、视觉和运动能力以及速度-准确性偏差,使得在线任务测量认知能力的特异性变得复杂。为了解决这些局限性,我们开发了IDoCT(认知任务迭代分解法),这是一种以数据驱动的方式,从任务表现时间进程中估计特定领域认知能力和试验难度量表的方法,同时考虑设备和视觉运动延迟、非特定认知过程以及速度-准确性权衡。IDoCT可以与任何认知难度因试验而异的计算机化任务一起使用。利用来自388,757名成年人的数据,我们表明IDoCT成功地将认知能力与这些混杂因素区分开来。由此产生的认知分数在心理测量因素上表现出更强的区分度,改善了跨参与者的分布,并与有意义的人口统计学关联。我们认为IDoCT可以提高在线认知评估的精度,特别是在大规模临床和研究应用中。