Suppr超能文献

畸变铑纳米立方体的紫外等离激元行为

The UV Plasmonic Behavior of Distorted Rhodium Nanocubes.

作者信息

Gutiérrez Yael, Ortiz Dolores, Saiz José M, González Francisco, Everitt Henry O, Moreno Fernando

机构信息

Department of Applied Physics, University of Cantabria, Avda. Los Castros, s/n., 39005 Santander, Spain.

Department of Physics, Duke University, Durham, NC 27708, USA.

出版信息

Nanomaterials (Basel). 2017 Dec 4;7(12):425. doi: 10.3390/nano7120425.

Abstract

For applications of surface-enhanced spectroscopy and photocatalysis, the ultraviolet (UV) plasmonic behavior and charge distribution within rhodium nanocubes is explored by a detailed numerical analysis. The strongest plasmonic hot-spots and charge concentrations are located at the corners and edges of the nanocubes, exactly where they are the most spectroscopically and catalytically active. Because intense catalytic activity at corners and edges will reshape these nanoparticles, distortions of the cubical shape, including surface concavity, surface convexity, and rounded corners and edges, are also explored to quantify how significantly these distortions deteriorate their plasmonic and photocatalytic properties. The fact that the highest fields and highest carrier concentrations occur in the corners and edges of Rh nanocubes (NCs) confirms their tremendous potential for plasmon-enhanced spectroscopy and catalysis. It is shown that this opportunity is fortuitously enhanced by the fact that even higher field and charge concentrations reside at the interface between the metal nanoparticle and a dielectric or semiconductor support, precisely where the most chemically active sites are located.

摘要

对于表面增强光谱学和光催化应用,通过详细的数值分析来探究铑纳米立方体中的紫外(UV)等离子体行为和电荷分布。最强的等离子体热点和电荷浓度位于纳米立方体的角和边缘,恰恰是它们在光谱学和催化方面最活跃的地方。由于角和边缘处的强烈催化活性会重塑这些纳米颗粒,因此还研究了立方体形状的畸变,包括表面凹陷、表面凸起以及圆角和圆边,以量化这些畸变对其等离子体和光催化性能的恶化程度。铑纳米立方体(NCs)的角和边缘出现最高场强和最高载流子浓度这一事实证实了它们在等离子体增强光谱学和催化方面的巨大潜力。结果表明,由于在金属纳米颗粒与电介质或半导体载体的界面处存在更高的场强和电荷浓度,而这里恰好是最具化学活性的位点所在,这一机会被意外地增强了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc19/5746915/07f4778a37c4/nanomaterials-07-00425-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验