Suppr超能文献

使用亚5纳米间隙等离子体纳米指阵列的热电子驱动光催化

Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.

作者信息

Wang Yunxiang, Chen Buyun, Meng Deming, Song Boxiang, Liu Zerui, Hu Pan, Yang Hao, Ou Tse-Hsien, Liu Fanxin, Pi Halton, Pi Irene, Pi Isleen, Wu Wei

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Nanomaterials (Basel). 2022 Oct 24;12(21):3730. doi: 10.3390/nano12213730.

Abstract

Semiconductor photocatalysis has received increasing attention because of its potential to address problems related to the energy crisis and environmental issues. However, conventional semiconductor photocatalysts, such as TiO and ZnO, can only be activated by ultraviolet light due to their wide band gap. To extend the light absorption into the visible range, the localized surface plasmon resonance (LSPR) effect of noble metal nanoparticles (NPs) has been widely used. Noble metal NPs can couple incident visible light energy to strong LSPR, and the nonradiative decay of LSPR generates nonthermal hot carriers that can be injected into adjacent semiconductor material to enhance its photocatalytic activity. Here we demonstrate that nanoimprint-defined gap plasmonic nanofinger arrays can function as visible light-driven plasmonic photocatalysts. The sub-5 nm gaps between pairs of collapsed nanofingers can support ultra-strong plasmon resonance and thus boost the population of hot carriers. The semiconductor material is exactly placed at the hot spots, providing an efficient pathway for hot carrier injection from plasmonic metal to catalytic materials. This nanostructure thus exhibits high plasmon-enhanced photocatalytic activity under visible light. The hot carrier injection mechanism of this platform was systematically investigated. The plasmonic enhancement factor was calculated using the finite-difference time-domain (FDTD) method and was consistent with the measured improvement of the photocatalytic activity. This platform, benefiting from the precise controllable geometry, provides a deeper understanding of the mechanism of plasmonic photocatalysis.

摘要

半导体光催化因其在解决能源危机和环境问题方面的潜力而受到越来越多的关注。然而,传统的半导体光催化剂,如TiO和ZnO,由于其宽带隙,只能被紫外光激活。为了将光吸收扩展到可见光范围,贵金属纳米颗粒(NPs)的局域表面等离子体共振(LSPR)效应已被广泛应用。贵金属NPs可以将入射的可见光能量耦合到强LSPR,LSPR的非辐射衰减产生非热载流子,这些载流子可以注入相邻的半导体材料中以增强其光催化活性。在这里,我们证明了纳米压印定义的间隙等离子体纳米指阵列可以作为可见光驱动的等离子体光催化剂。成对塌陷的纳米指之间小于5nm的间隙可以支持超强的等离子体共振,从而增加热载流子的数量。半导体材料正好放置在热点处,为热载流子从等离子体金属注入催化材料提供了一条有效途径。因此,这种纳米结构在可见光下表现出高的等离子体增强光催化活性。对该平台的热载流子注入机制进行了系统研究。使用时域有限差分(FDTD)方法计算了等离子体增强因子,其与光催化活性的测量提高一致。该平台得益于精确可控的几何结构,为等离子体光催化机理提供了更深入的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911d/9655529/571159f571fd/nanomaterials-12-03730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验