Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands.
Macromol Rapid Commun. 2018 Mar;39(5). doi: 10.1002/marc.201700710. Epub 2017 Dec 6.
Soft matter elements undergoing programed, reversible shape change can contribute to fundamental advance in areas such as optics, medicine, microfluidics, and robotics. Crosslinked liquid crystalline polymers have demonstrated huge potential to implement soft responsive elements; however, the complexity and size of the actuators are limited by the current dominant thin-film geometry processing toolbox. Using 3D printing, stimuli-responsive liquid crystalline elastomeric structures are created here. The printing process prescribes a reversible shape-morphing behavior, offering a new paradigm for active polymer system preparation. The additive character of this technology also leads to unprecedented geometries, complex functions, and sizes beyond those of typical thin-films. The fundamental concepts and devices presented therefore overcome the current limitations of actuation energy available from thin-films, thereby narrowing the gap between materials and practical applications.
经历程序可控、可逆形状变化的软物质元件可在光学、医学、微流控和机器人等领域带来重大进展。交联液晶聚合物已经证明在实现软响应元件方面具有巨大的潜力;然而,由于当前占主导地位的薄膜几何加工工具箱的限制,致动器的复杂性和尺寸受到限制。这里使用 3D 打印来创建对刺激响应的液晶弹性体结构。打印过程规定了一种可逆的形状变形行为,为主动聚合物系统的制备提供了新的范例。该技术的添加特性还导致了前所未有的几何形状、复杂功能和尺寸,超出了典型薄膜的尺寸。因此,所提出的基本概念和器件克服了薄膜提供的致动可用能量的当前限制,从而缩小了材料和实际应用之间的差距。