Sartori Paolo, Yadav Rahul Singh, Del Barrio Jesús, DeSimone Antonio, Sánchez-Somolinos Carlos
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain.
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Química Orgánica, Zaragoza, 50009, Spain.
Adv Sci (Weinh). 2024 Jul;11(25):e2308561. doi: 10.1002/advs.202308561. Epub 2024 Apr 8.
Underwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape-changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene-containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate-intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four-lapped ephyra-like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate-intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light-fueled robotic LCE free-swimmers.
水下生物展现出复杂的推进机制,使它们能够在流体环境中极为灵活地游动。近来,大量研究致力于利用智能形状改变材料将这些运动整合到软体机器人中,特别是利用光来实现推进和控制。然而,挑战依然存在,包括响应时间缓慢以及需要强大光束来驱动机器人。后者可能导致意外的样本加热,并可能需要追踪游泳机器人上的特定驱动点。为应对这些挑战,引入了新型含偶氮苯的可光聚合墨水,其可通过挤出打印加工成精确形状和形态的液晶弹性体(LCE)元件。这些LCE在水下展现出快速且显著的光机械响应,由中等强度的紫外线(UV)和绿光驱动,其驱动机制主要是光化学过程。受自然启发,打印出了一种仿生的四瓣状碟状幼体样LCE游泳机器人。用中等强度的UV和绿光对整个游泳机器人进行周期性照射,会促使瓣片同步向光源弯曲,使游泳机器人向远离光源的方向推进。该平台无需局部激光束和跟踪系统来监测游泳机器人在流体中的运动,使其成为创建以光为动力的自主游动LCE机器人的通用工具。