Sensor and Actuator Systems, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
Australian Institute of Innovative Materials, Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
Soft Robot. 2021 Feb;8(1):19-27. doi: 10.1089/soro.2019.0129. Epub 2020 Apr 23.
Current additive manufacturing, including three-dimensional (3D) and so-called four-dimensional printing, of soft robotic devices is limited to millimeter sizes. In this study, we present additive manufacturing of soft microactuators and microrobots to fabricate even smaller structures in the micrometer domain. Using a custom-built extrusion 3D printer, microactuators are scaled down to a size of 300 × 1000 μm, with minimum thickness of 20 μm. Microactuators combined with printed body and electroactive polymers to drive the actuators are fabricated from computer-aided design model of the device structure. To demonstrate the ease and versatility of 3D printing process, microactuators with varying lengths ranging from 1000 to 5000 μm are fabricated and operated. Likewise, microrobotic devices consisting of a rigid body and individually controlled free-moving arms or legs are 3D printed to explore the microfabrication of soft grippers, manipulators, or microrobots through simple additive manufacturing technique.
目前,软性机器人设备的增材制造(包括三维和所谓的四维打印)仅限于毫米尺寸。在这项研究中,我们提出了软性微执行器和微型机器人的增材制造,以在微米领域制造更小的结构。使用定制的挤出式 3D 打印机,微执行器的尺寸缩小到 300×1000μm,最小厚度为 20μm。微执行器与打印体和致动器的电活性聚合物结合在一起,由器件结构的计算机辅助设计模型制造而成。为了展示 3D 打印工艺的易用性和多功能性,制造了具有从 1000 到 5000μm 不等的各种长度的微执行器并进行了操作。同样,由刚性主体和单独控制的自由移动的臂或腿组成的微型机器人设备也通过 3D 打印来探索通过简单的增材制造技术实现软性夹持器、操纵器或微型机器人的微加工。