Suppr超能文献

基于无扩散的代谢组学数据富集。

Null diffusion-based enrichment for metabolomics data.

机构信息

Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain.

Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.

出版信息

PLoS One. 2017 Dec 6;12(12):e0189012. doi: 10.1371/journal.pone.0189012. eCollection 2017.

Abstract

Metabolomics experiments identify metabolites whose abundance varies as the conditions under study change. Pathway enrichment tools help in the identification of key metabolic processes and in building a plausible biological explanation for these variations. Although several methods are available for pathway enrichment using experimental evidence, metabolomics does not yet have a comprehensive overview in a network layout at multiple molecular levels. We propose a novel pathway enrichment procedure for analysing summary metabolomics data based on sub-network analysis in a graph representation of a reference database. Relevant entries are extracted from the database according to statistical measures over a null diffusive process that accounts for network topology and pathway crosstalk. Entries are reported as a sub-pathway network, including not only pathways, but also modules, enzymes, reactions and possibly other compound candidates for further analyses. This provides a richer biological context, suitable for generating new study hypotheses and potential enzymatic targets. Using this method, we report results from cells depleted for an uncharacterised mitochondrial gene using GC and LC-MS data and employing KEGG as a knowledge base. Partial validation is provided with NMR-based tracking of 13C glucose labelling of these cells.

摘要

代谢组学实验确定了那些丰度随研究条件变化而变化的代谢物。途径富集工具有助于识别关键代谢过程,并为这些变化建立合理的生物学解释。尽管有几种方法可用于使用实验证据进行途径富集,但代谢组学在多个分子水平的网络布局中还没有全面的概述。我们提出了一种新的途径富集程序,用于基于参考数据库图形表示中的子网络分析来分析汇总代谢组学数据。根据一个考虑网络拓扑和途径串扰的空扩散过程的统计度量,从数据库中提取相关条目。条目报告为一个子途径网络,不仅包括途径,还包括模块、酶、反应,以及可能的其他化合物候选物,以进行进一步分析。这提供了更丰富的生物学背景,适合生成新的研究假设和潜在的酶靶标。我们使用这种方法,根据 GC 和 LC-MS 数据和 KEGG 作为知识库,报告了用未表征的线粒体基因耗尽细胞的结果。我们提供了使用这些细胞的 13C 葡萄糖标记的 NMR 跟踪的部分验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cec/5718512/97f14f1fb1a3/pone.0189012.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验