Suppr超能文献

早期后除极对人体心室精确模型中兴奋模式的影响。

Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles.

作者信息

Van Nieuwenhuyse Enid, Seemann Gunnar, Panfilov Alexander V, Vandersickel Nele

机构信息

Department of Physics and Astronomy, Ghent University, Ghent, Belgium.

Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.

出版信息

PLoS One. 2017 Dec 7;12(12):e0188867. doi: 10.1371/journal.pone.0188867. eCollection 2017.

Abstract

Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level.

摘要

早期后去极化(EADs)被定义为复极化阶段尚未完成时动作电位的反转,这可能导致异位搏动。然而,导致这些异位搏动和相关心律失常的EADs系列机制尚未完全清楚。因此,我们旨在研究这种单细胞行为对全心水平的影响。在本研究中,我们使用了人类心室细胞Ten Tusscher-Panfilov模型(TP06)的改进版本,并将其应用于包含实际纤维方向的三维心室模型中。为了增加单细胞水平上EAD形成的可能性,我们通过降低快速延迟整流钾电流和提高L型钙电流来降低复极化储备(RR)。改变这些参数定义了一个二维参数空间,在这个空间中可以对不同的兴奋模式进行分类。根据初始条件,通过用螺旋波形成或短阵猝发起搏方案刺激心室,我们发现了多种不同的时空兴奋模式。螺旋波形成方案导致了稳定螺旋(S)、蜿蜒螺旋(MS)、螺旋波破裂状态(SB)、B型螺旋性颤动(B)、A型螺旋性颤动(A)和振荡兴奋类型(O)的分类。最后三种模式是之前在二维中发现的模式的三维推广。首先,B型螺旋性颤动显示出由混沌双兴奋状态决定的波,即在相同的组织环境中同时由钠波和钙波介导。在由B模式控制的参数区域中,单细胞能够完全复极化,不同的(螺旋)波在没有完成360度旋转的情况下相互混沌地爆发。其次,A型螺旋性颤动模式由多个小的旋转螺旋组成。单细胞未能复极化到静息膜电位,因此阻止了钠通道门的恢复。因此,我们发现钙波介导了这些模式。第三,RR的进一步降低导致了一个更奇特的参数区域,在这个区域中单个细胞作为振荡器独立运作。由于不同振荡器的相移导致了这些模式的出现,因为细胞的分离导致了模式的持续。对于所有模式,我们通过纳入躯干模型计算了逼真的9导联心电图。B型和A型模式表现出室性心动过速(VT)的行为。我们得出结论,单细胞水平上的EADs可导致组织和三维心室水平上不同类型的心脏颤动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e52/5720514/3b3fc3fa321a/pone.0188867.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验