Suppr超能文献

体细胞高尔基器重定位对于成年海马神经元的树突建立是必需的。

Repositioning of Somatic Golgi Apparatus Is Essential for the Dendritic Establishment of Adult-Born Hippocampal Neurons.

机构信息

Program in Neuroscience.

Medical Scientist Training Program, Stony Brook Medicine, and.

出版信息

J Neurosci. 2018 Jan 17;38(3):631-647. doi: 10.1523/JNEUROSCI.1217-17.2017. Epub 2017 Dec 7.

Abstract

New dentate granule cells (DGCs) are continuously generated, and integrate into the preexisting hippocampal network in the adult brain. How an adult-born neuron with initially simple spindle-like morphology develops into a DGC, consisting of a single apical dendrite with further branches, remains largely unknown. Here, using retroviruses to birth date and manipulate newborn neurons, we examined initial dendritic formation and possible underlying mechanisms. We found that GFP-expressing newborn cells began to establish a DGC-like morphology at ∼7 d after birth, with a primary dendrite pointing to the molecular layer, but at this stage, with several neurites in the neurogenic zone. Interestingly, the Golgi apparatus, an essential organelle for neurite growth and maintenance, was dynamically repositioning in the soma of newborn cells during this initial integration stage. Two weeks after birth, by which time most neurites in the neurogenic zone were eliminated, a compact Golgi apparatus was positioned exclusively at the base of the primary dendrite. We analyzed the presence of Golgi-associated genes using single-cell transcriptomes of newborn DGCs, and among Golgi-related genes, found the presence of and , regulators of embryonic neuronal development. When we knocked down either of these two proteins, we found Golgi mislocalization and extensive aberrant dendrite formation. Furthermore, overexpression of a mutated form of STRAD, underlying the disorder polyhydramnios, megalencephaly, and symptomatic epilepsy, characterized by abnormal brain development and intractable epilepsy, caused similar defects in Golgi localization and dendrite formation in adult-born neurons. Together, our findings reveal a role for Golgi repositioning in regulating the initial integration of adult-born DGCs. Since the discovery of the continuous generation of new neurons in the adult hippocampus, extensive effort was directed toward understanding the functional contribution of these newborn neurons to the existing hippocampal circuit and associated behaviors, while the molecular mechanisms controlling their early morphological integration are less well understood. Dentate granule cells (DGCs) have a single, complex, apical dendrite. The events leading adult-born DGCs' to transition from simple spindle-like morphology to mature dendrite morphology are largely unknown. We studied establishment of newborn DGCs dendritic pattern and found it was mediated by a signaling pathway regulating precise localization of the Golgi apparatus. Furthermore, this Golgi-associated mechanism for dendrite establishment might be impaired in a human genetic epilepsy syndrome, polyhydramnios, megalencephaly, and symptomatic epilepsy.

摘要

新的颗粒状神经元(DGCs)不断产生,并整合到成年大脑中预先存在的海马网络中。一个具有最初简单纺锤形形态的成年神经元如何发育成具有单个顶树突和进一步分支的 DGC,在很大程度上仍然未知。在这里,我们使用逆转录病毒来标记和操纵新生神经元,以研究初始树突的形成和可能的潜在机制。我们发现,表达 GFP 的新生细胞在出生后约 7 天开始形成 DGC 样形态,具有指向分子层的主树突,但在这个阶段,神经发生区有几个轴突。有趣的是,高尔基器,一个对轴突生长和维持至关重要的细胞器,在这个初始整合阶段在新生细胞的胞体中动态重新定位。出生后两周,此时神经发生区的大多数轴突已被消除,一个紧凑的高尔基器被定位在主树突的基部。我们使用新生 DGC 的单细胞转录组分析了高尔基相关基因的存在,在与高尔基相关的基因中,发现了 和 ,它们是胚胎神经元发育的调节剂。当我们敲低这两种蛋白质中的任何一种时,我们发现高尔基器定位错误和广泛的异常树突形成。此外,STRAD 的突变形式的过表达,导致多囊羊水、巨脑和症状性癫痫等疾病,这些疾病的特征是异常的大脑发育和难治性癫痫,导致成年新生神经元中高尔基器定位和树突形成的类似缺陷。总之,我们的发现揭示了高尔基器重新定位在调节成年新生 DGCs 的初始整合中的作用。自成年海马体中不断产生新神经元的发现以来,人们已经投入大量精力来理解这些新生神经元对现有海马回路和相关行为的功能贡献,而控制其早期形态整合的分子机制则知之甚少。颗粒状神经元(DGCs)有一个单一的、复杂的、顶树突。从简单的纺锤形形态过渡到成熟树突形态的成年新生 DGC 的事件在很大程度上仍然未知。我们研究了新生 DGCs 树突模式的建立,发现它是由一个信号通路介导的,该通路调节高尔基器的精确定位。此外,这种与高尔基器相关的树突建立机制可能在人类遗传性癫痫综合征多囊羊水、巨脑和症状性癫痫中受到损害。

相似文献

10
Imaging neurite development of adult-born granule cells.成像成年神经发生颗粒细胞的突起发育。
Development. 2013 Jul;140(13):2823-7. doi: 10.1242/dev.091249. Epub 2013 May 29.

引用本文的文献

1
The neuronal Golgi in neural circuit formation and reorganization.神经回路形成与重组中的神经元高尔基体。
Front Neural Circuits. 2024 Dec 5;18:1504422. doi: 10.3389/fncir.2024.1504422. eCollection 2024.

本文引用的文献

8
Increased neuronal activity fragments the Golgi complex.神经元活动增加会使高尔基复合体碎片化。
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1482-7. doi: 10.1073/pnas.1220978110. Epub 2013 Jan 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验