Suppr超能文献

颗粒物对出生体重影响的空间多分辨率分析

Spatial Multiresolution Analysis of the Effect of PM on Birth Weights.

作者信息

Antonelli Joseph, Schwartz Joel, Kloog Itai, Coull Brent A

机构信息

Harvard Chan School of Public Health.

Ben-Gurion University of The Negev.

出版信息

Ann Appl Stat. 2017;11(2):792-807. doi: 10.1214/16-AOAS1018. Epub 2017 Jul 20.

Abstract

Fine particulate matter (PM) measured at a given location is a mix of pollution generated locally and pollution traveling long distances in the atmosphere. Therefore, the identification of spatial scales associated with health effects can inform on pollution sources responsible for these effects, resulting in more targeted regulatory policy. Recently, prediction methods that yield high-resolution spatial estimates of PM exposures allow one to evaluate such scale-specific associations. We propose a two-dimensional wavelet decomposition that alleviates restrictive assumptions required for standard wavelet decompositions. Using this method we decompose daily surfaces of PM to identify which scales of pollution are most associated with adverse health outcomes. A key feature of the approach is that it can remove the purely temporal component of variability in PM levels and calculate effect estimates derived solely from spatial contrasts. This eliminates the potential for unmeasured confounding of the exposure - outcome associations by temporal factors, such as season. We apply our method to a study of birth weights in Massachusetts, U.S.A from 2003-2008 and find that both local and urban sources of pollution are strongly negatively associated with birth weight. Results also suggest that failure to eliminate temporal confounding in previous analyses attenuated the overall effect estimate towards zero, with the effect estimate growing in magnitude once this source of variability is removed.

摘要

在给定地点测量的细颗粒物(PM)是本地产生的污染和大气中远距离传输的污染的混合体。因此,识别与健康影响相关的空间尺度可以为造成这些影响的污染源提供信息,从而制定更具针对性的监管政策。最近,能够生成高分辨率PM暴露空间估计值的预测方法使人们能够评估此类特定尺度的关联。我们提出了一种二维小波分解方法,该方法减轻了标准小波分解所需的严格假设。使用这种方法,我们分解了PM的每日表面,以确定哪种污染尺度与不良健康结果最相关。该方法的一个关键特征是它可以去除PM水平变化中纯粹的时间成分,并计算仅从空间对比得出的效应估计值。这消除了季节等时间因素对暴露-结果关联造成未测量混杂的可能性。我们将我们的方法应用于对美国马萨诸塞州2003年至2008年出生体重的研究,发现本地和城市污染源都与出生体重呈强烈负相关。结果还表明,在先前的分析中未能消除时间混杂会使总体效应估计值向零衰减,一旦消除这种变异性来源,效应估计值的幅度就会增大。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验