Suppr超能文献

评估空气污染暴露预测模型的健康估计能力。

Assessing the health estimation capacity of air pollution exposure prediction models.

机构信息

Department of Global and Community Health, George Mason University, 4400 University Drive, MS 5B7, Fairfax, VA, 22030, USA.

Department of Statistics, Colorado State University, 1877 Campus Delivery, Fort Collins, CO, 80523, USA.

出版信息

Environ Health. 2022 Mar 17;21(1):35. doi: 10.1186/s12940-022-00844-0.

Abstract

BACKGROUND

The era of big data has enabled sophisticated models to predict air pollution concentrations over space and time. Historically these models have been evaluated using overall metrics that measure how close predictions are to monitoring data. However, overall methods are not designed to distinguish error at timescales most relevant for epidemiologic studies, such as day-to-day errors that impact studies of short-term health associations.

METHODS

We introduce frequency band model performance, which quantifies health estimation capacity of air quality prediction models for time series studies of air pollution and health. Frequency band model performance uses a discrete Fourier transform to evaluate prediction models at timescales of interest. We simulated fine particulate matter (PM), with errors at timescales varying from acute to seasonal, and health time series data. To compare evaluation approaches, we use correlations and root mean squared error (RMSE). Additionally, we assess health estimation capacity through bias and RMSE in estimated health associations. We apply frequency band model performance to PM predictions at 17 monitors in 8 US cities.

RESULTS

In simulations, frequency band model performance rates predictions better (lower RMSE, higher correlation) when there is no error at a particular timescale (e.g., acute) and worse when error is added to that timescale, compared to overall approaches. Further, frequency band model performance is more strongly associated (R = 0.95) with health association bias compared to overall approaches (R = 0.57). For PM predictions in Salt Lake City, UT, frequency band model performance better identifies acute error that may impact estimated short-term health associations.

CONCLUSIONS

For epidemiologic studies, frequency band model performance provides an improvement over existing approaches because it evaluates models at the timescale of interest and is more strongly associated with bias in estimated health associations. Evaluating prediction models at timescales relevant for health studies is critical to determining whether model error will impact estimated health associations.

摘要

背景

大数据时代使得复杂模型能够预测时空大气污染浓度。从历史上看,这些模型是使用整体指标进行评估的,这些指标衡量预测与监测数据的接近程度。然而,整体方法并非旨在区分与流行病学研究最相关的时间尺度上的误差,例如影响短期健康关联研究的日常误差。

方法

我们引入了频带模型性能,它量化了空气质量预测模型在空气污染和健康时间序列研究中的健康估计能力。频带模型性能使用离散傅里叶变换来评估感兴趣时间尺度上的预测模型。我们模拟了细颗粒物 (PM),其误差时间尺度从急性到季节性不等,以及健康时间序列数据。为了比较评估方法,我们使用相关性和均方根误差 (RMSE)。此外,我们通过估计健康关联中的偏差和 RMSE 来评估健康估计能力。我们将频带模型性能应用于美国 8 个城市 17 个监测站的 PM 预测。

结果

在模拟中,与整体方法相比,频带模型性能在特定时间尺度(例如急性)没有误差时会更好地评估预测(较低的 RMSE,较高的相关性),而在该时间尺度添加误差时会更差。此外,与整体方法相比,频带模型性能与健康关联偏差的相关性更强(R=0.95)。对于犹他州盐湖城的 PM 预测,频带模型性能更好地识别出可能影响估计短期健康关联的急性误差。

结论

对于流行病学研究,频带模型性能提供了优于现有方法的改进,因为它在感兴趣的时间尺度上评估模型,并且与估计健康关联中的偏差的相关性更强。评估与健康研究相关的时间尺度对于确定模型误差是否会影响估计的健康关联至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0877/8928613/507738103272/12940_2022_844_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验