Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237, Düsseldorf, Germany.
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, IEK-11, Forschungszentrum Jülich GmbH, Egerlandstrasse 3, 91058, Erlangen, Germany.
Angew Chem Int Ed Engl. 2018 Feb 23;57(9):2488-2491. doi: 10.1002/anie.201709652. Epub 2018 Feb 5.
Understanding the pathways of catalyst degradation during the oxygen evolution reaction is a cornerstone in the development of efficient and stable electrolyzers, since even for the most promising Ir based anodes the harsh reaction conditions are detrimental. The dissolution mechanism is complex and the correlation to the oxygen evolution reaction itself is still poorly understood. Here, by coupling a scanning flow cell with inductively coupled plasma and online electrochemical mass spectrometers, we monitor the oxygen evolution and degradation products of Ir and Ir oxides in situ. It is shown that at high anodic potentials several dissolution routes become possible, including formation of gaseous IrO . On the basis of experimental data, possible pathways are proposed for the oxygen-evolution-triggered dissolution of Ir and the role of common intermediates for these reactions is discussed.
理解析氧反应过程中催化剂降解的途径是开发高效稳定电解槽的基石,因为即使对于最有前途的 Ir 基阳极,苛刻的反应条件也是有害的。溶解机理很复杂,与析氧反应本身的相关性仍知之甚少。在这里,我们通过将扫描流动池与电感耦合等离子体和在线电化学质谱仪相结合,原位监测 Ir 和 Ir 氧化物的析氧和降解产物。结果表明,在高阳极电位下,几种溶解途径成为可能,包括形成气态 IrO4。基于实验数据,提出了 Ir 析氧引发溶解的可能途径,并讨论了这些反应的常见中间体的作用。