Chen Xin, Fan Ruihua, Chen Yiming, Zhai Hui, Zhang Pengfei
Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA.
Phys Rev Lett. 2017 Nov 17;119(20):207603. doi: 10.1103/PhysRevLett.119.207603. Epub 2017 Nov 15.
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
萨赫德夫 - 叶 - 基塔耶夫(SYK)模型是一个用于研究非费米液体性质、全息对偶性和最大混沌行为的具体可解模型。在这项工作中,我们考虑对SYK模型进行推广,该推广模型包含两个具有不同数量马约拉纳模式的SYK模型,它们通过二次项耦合。这个模型也是可解的,其解显示出两个非费米液体混沌相之间的零温量子相变。这个相变是通过调整两个模式数的比例来驱动的,并且一个非混沌费米液体位于具有相等模式数的临界点。在有限温度下,费米液相扩展到一个有限区域。更有趣的是,在有限温度下会出现一个不同的非费米液相。我们根据谱函数、李雅普诺夫指数和熵来刻画相图。我们的结果展示了两个非费米液相之间量子相变和临界行为的一个具体例子。