Shanghai Center for Complex Physics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
TCM Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Phys Rev Lett. 2018 Jun 15;120(24):241603. doi: 10.1103/PhysRevLett.120.241603.
Quantum chaos is one of the distinctive features of the Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions in 0+1 dimensions with infinite-range two-body interactions, which is attracting a lot of interest as a toy model for holography. Here we show analytically and numerically that a generalized SYK model with an additional one-body infinite-range random interaction, which is a relevant perturbation in the infrared, is still quantum chaotic and retains most of its holographic features for a fixed value of the perturbation and sufficiently high temperature. However, a chaotic-integrable transition, characterized by the vanishing of the Lyapunov exponent and spectral correlations given by Poisson statistics, occurs at a temperature that depends on the strength of the perturbation. We speculate about the gravity dual of this transition.
量子混沌是 Sachdev-Ye-Kitaev(SYK)模型的一个显著特征,该模型是具有无限范围二体相互作用的 0+1 维 N Majorana 费米子,作为全息术的玩具模型吸引了很多关注。在这里,我们通过分析和数值模拟表明,具有额外的单一体无限范围随机相互作用的广义 SYK 模型,在红外区域是相关的微扰,对于固定的微扰值和足够高的温度,仍然是量子混沌的,并保留了其大部分的全息特征。然而,在一个依赖于微扰强度的温度下,会发生混沌-可积转变,其特征是 Lyapunov 指数和由泊松统计给出的谱相关性的消失。我们对这个转变的引力对偶进行了推测。