Misawa Masaaki, Tiwari Subodh, Hong Sungwook, Krishnamoorthy Aravind, Shimojo Fuyuki, Kalia Rajiv K, Nakano Aiichiro, Vashishta Priya
Collaboratory for Advanced Computing and Simulations, Department of Physics & Astronomy, Department of Computer Science, Department of Chemical Engineering & Materials Science, Department of Biological Sciences, University of Southern California , Los Angeles, California 90089-0242, United States.
Department of Physics, Kumamoto University , Kumamoto 860-8555, Japan.
J Phys Chem Lett. 2017 Dec 21;8(24):6206-6210. doi: 10.1021/acs.jpclett.7b03011. Epub 2017 Dec 13.
Two-dimensional and layered MoS is a promising candidate for next-generation electric devices due to its unique electronic, optical, and chemical properties. Chemical vapor deposition (CVD) is the most effective way to synthesize MoS monolayer on a target substrate. During CVD synthesis, sulfidation of MoO surface is a critical reaction step, which converts MoO to MoS. However, initial reaction steps for the sulfidation of MoO remain to be fully understood. Here, we report first-principles quantum molecular dynamics (QMD) simulations for the initiation dynamics of sulfidation of MoO (010) surface using S and S molecules. We found that S molecule is much more reactive on the MoO surface than S molecule. Furthermore, our QMD simulations revealed that a surface O-vacancy on the MoO surface makes the sulfidation process preferable kinetically and thermodynamically. Our work clarifies an essential role of surface defects to initiate and accelerate the reaction of MoO and gas-phase sulfur precursors for CVD synthesis of MoS layers.
二维层状二硫化钼因其独特的电学、光学和化学性质,是下一代电子器件的理想候选材料。化学气相沉积(CVD)是在目标衬底上合成二硫化钼单层最有效的方法。在CVD合成过程中,氧化钼表面的硫化是一个关键反应步骤,该步骤将氧化钼转化为二硫化钼。然而,氧化钼硫化的初始反应步骤仍有待充分了解。在此,我们报告了使用S和S₂分子对氧化钼(010)表面硫化起始动力学进行的第一性原理量子分子动力学(QMD)模拟。我们发现S分子在氧化钼表面比S₂分子更具反应活性。此外,我们的QMD模拟表明,氧化钼表面的一个表面氧空位使硫化过程在动力学和热力学上更具优势。我们的工作阐明了表面缺陷在启动和加速氧化钼与气相硫前驱体反应以进行CVD合成二硫化钼层中的重要作用。